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Abstract— Safety is essential for reinforcement learning (RL)
applied in real-world tasks like autonomous driving. Imposing
chance constraints (or probabilistic constraints) is a suitable
way to enhance RL safety under model uncertainty. Existing
chance constrained RL methods like the penalty methods and
the Lagrangian methods either exhibit periodic oscillations
or learn an over-conservative or unsafe policy. In this paper,
we address these shortcomings by elegantly combining these
two methods and propose a separated proportional-integral
Lagrangian (SPIL) algorithm. We first rewrite penalty methods
as optimizing safe probability according to the proportional
value of constraint violation, and Lagrangian methods as
optimizing according to the integral value of the violation. Then
we propose to add up both the integral and proportion values
to optimize the policy, with an integral separation technique to
limit the integral value within a reasonable range. Besides, the
gradient of policy is computed in a model-based paradigm to
accelerate training. The proposed method is proved to reduce
oscillations and conservatism while ensuring safety by a car-
following experiment.

I. INTRODUCTION

Reinforcement Learning (RL) has shown exceptional
successes in a variety of domains, from video games [1]–
[3] to robotics [4], [5]. As a self-learning method, RL
is promising to reduce the massive engineering efforts
in autonomous driving. In recent years, there has been
a growing interest towards RL in autonomous driving
community, such as adaptive cruise control [6], lane-keeping
[7], trajectory tracking [8] and multi-vehicle cooperation
[9]. However, despite achieving decent performance, these
RL methods mostly lack explicit safety constraints,
which significantly limits their application in safety-critical
autonomous driving.

Recently, some RL researchers begin to investigate
including different forms of safety constraints in RL
algorithms to improve safety for real-world applications
[10]–[13]. One of the most popular forms is the chance
constraint, which constrains the possibility of the control
policy violating the state constraint below a given level
[10], [14], [15]. Chance constraint gives an intuitive and
quantitative measure of the safety level of the control policy,
so it is suitable to represent the safety demands in real-world
systems with uncertainty.
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Existing strategies used to solve the chance constrained RL
problems can be roughly categorized into two approaches.
The first solution is the penalty method that gives a
large penalty to the objective function for violation of
the constraint [9], [14]. Although this approach is very
straightforward and simple to implement, it requires the
penalty weight to strike a balance between safety and
performance correctly. Unfortunately, it is usually difficult
to select an appropriate weight. As shown in Fig. 1(a), a
large penalty is prone to rapid oscillations and does not
converge to a safe policy, while a small penalty cannot satisfy
the constraint [16]. The second approach is the Lagrangian
method [10], [15], which is widely used in constrained
optimization. Actually, it can be regarded as the penalty
method with an adaptive weight, which is dynamically
adjusted by safety level rather than fixed. Nevertheless, the
Lagrangian method suffers from overshooting of Lagrange
multiplier under tight chance constraint as shown in Fig.
1(b), which will lead to a over-conservative policy. Besides, it
may also have periodic oscillations, resulting from the delay
between the optimization of policy and adaptation of the
Lagrange multiplier [17], [18].
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Fig. 1. (a) Penalty method exhibits oscillations and violates the constraint.
(b) Lagrangian method exhibits overshooting and oscillations of Lagrange
multiplier.

To overcome the drawbacks of previous two methods,
we elegantly integrate them and propose a separated
proportional-integral Lagrangian (SPIL) method which can
fulfill the safety requirements with a steady and fast
learning process. Inspired by the dynamical systems view
of optimization [18], [19], we first rewrite penalty methods
as optimizing safe probability according to the proportional
value of constraint violation, and Lagrangian methods as
optimizing according to the integral value of the violation.
Subsequently, a mixed proportional-integral method is
formulated, which combines both methods to get their merits.



To avoid a excessively high integral value (i.e., integral-
overshooting), we draw inspiration from PID control again
and introduce the integral separation technique, i.e., separate
the integrator out when the integral value is large. Such
a recipe solves the integral-overshooting problem that is
ignored and unsolved in similar works [18]. In addition, we
also introduce an analytical gradient of the safe probability
with the theoretical basis to optimize policy in a model-
based framework. Finally, the experiment of a car-following
task demonstrates SPIL succeeds in satisfying the chance
constraint while achieving best cumulative reward.

The contributions of this paper are summarize as follows,

1) a separated proportional-integral Lagrangian (SPIL)
algorithm is proposed to solve chance constrained RL
problems with better performance while satisfying the
constraint.

2) an analytical gradient of safe probability is introduced
for model-based policy optimization with theoretic
basis.

The rest of this paper is organized as follows. The chance
constrained RL problem is formulated in Section II. The
SPIL method is proposed in Section III. The effectiveness of
the method is illustrated by a car-following task in Section
IV. Section V concludes this paper.

II. CHANCE CONSTRAINED RL PROBLEMS

Considering a discrete-time stochastic system, the dynamic
with the chance constraint is mathematically described as:

xt+1 = f(xt, ut, ξt),

ξt ∼ p(ξt),

Pr

{
N⋂
t=1

[h (xt) < 0]

}
≥ 1− δ

(1)

where t is the current step, xt ∈ X is the state, ut ∈
U is the action, f(·, ·, ·) is the environmental dynamic
model, ξt ∈ Rn is the uncertainty following an independent
and identical distribution p(ξt). h(·) is the state constraint
function defining a safe state region. We do not make
assumptions about the form of f(·, ·, ·) and h(·), i.e., they
can be linear or nonlinear. Note that here the safety constraint
takes the form of a joint chance constraint with 1 − δ
as the required threshold. This form is extensively used
in stochastic systems control [20]. Intuitively, it can be
interpreted as the probability of the plant staying within
a safe region over the finite horizon N is at least 1 − δ.
For simplicity, we only consider one constraint, but our
method can readily generalize to multiple constraints by
introducing multiple Lagrangian multipliers and updating
them respectively.

The objective of chance constrained RL problems is to
maximize the expectation of cumulative reward J , while

constraining the safe probability ps:

max
π

J (π) = Ex0,ξ

{ ∞∑
t=0

γtr (xt, ut)

}

s.t. ps(π) = Pr

{
N⋂
t=1

[h (xt) < 0]

}
≥ 1− δ

(2)

where r(·, ·) is the reward function, γ ∈ (0, 1) is the
discounting factor, Ex0,ξ(·) is the expectation w.r.t. the initial
state x0 and uncertainty ξ. π is the control policy, i.e., a
deterministic mapping from state space X to action space U
with parameters θ, i.e., ut = π(xt; θ).

III. SEPARATED PI LAGRANGIAN FOR CHANCE
CONSTRAINED RL PROBLEMS

In this section, we will elaborate on the SPIL method for
chance constrained problems. Besides, we also introduce an
analytical gradient of safe probability and update the policy
in a model-based mechanism.

A. Separated PI Lagrangian method

The PI Lagrangian method comes from a control view of
the penalty method and the traditional Lagrangian method.
It considers the penalty method as a proportional feedback
controller and the traditional Lagrangian method as an
integral feedback controller, which can be integrated together
and lead to a PI Lagrangian method. To see this, we
first review the penalty method and traditional Lagrangian
method. The penalty method adds a quadratic penalty term
in the objective function to force the satisfaction of the
constraint:

max
π

J(π)− 1

2
αp
(
(1− δ − ps(π))+

)2
(3)

where αp > 0 is the penalty weight, (·)+ means max(·, 0).
This unconstrained problem is solved by gradient ascent

θk ← θk−1 + αθ(∇θJk + αp(1− δ − pks)+∇θpks) (4)

where k means k-th iteration, αθ > 0 is the learning rate.
As for the traditional Lagrangian method, it first

transforms the original chance constrained problem (2) into
an dual problem by introduction of a the Lagrange multiplier
λ [21]:

max
λ≥0

max
π
L(π, λ) = J(π)− λ (1− δ − ps(π)) (5)

The problem (5) is solved by iteratively updating the
Lagrange multiplier and primal variables:

λk ← (λk−1 + αλ(1− δ − pks))+ (6)

θk ← θk−1 + αθ(∇θJk + λk∇θpks) (7)

where αλ > 0 is the learning rate. Comparing the policy
update rule of penalty method (4) with that of Lagrangian
method (7), one may find they are surprisingly similar. Both
gradients is the weighted sums of ∇θJk and ∇θpks . The
only difference lies in that the weight (1 − δ + pks)+ in
penalty method is the constraint violation at k-th iteration,



while the weight λ in Lagrangian method is the constraint
violation accumulated in the previous k iterations. This
insight builds the bridge between optimization and feedback
control. One can view the optimization as dynamic systems
control, where the weight of ∇θps is the control input, ps is
the control output, 1− δ is the desired output and 1− δ−pks
is the feedback error. Consequently, the penalty method
becomes a proportional controller with coefficient αp, while
the Lagrangian method becomes an integral controller with
coefficient αλ. Considering constrained optimization in such
a control perspective, one can immediately understand the
merits and faults of these two methods. For the penalty
method, a large penalty αp is prone to oscillations, while a
small penalty leads to steady-state errors, i.e., not satisfying
the constraint. For the Lagrangian method, it suffers from
periodic oscillations from a delayed feedback.

Subsequently, we naturally formulate a proportional-
integral Lagrangian method to realize fast and steady
learning process with no steady-state error. The update rule
is a combination of previous two methods:

∆k ← 1− δ − pks (8)

Ik ← (Ik−1 + ∆k)+ (9)

λk ← (KP∆k +KII
k)+ (10)

θk ← θk−1 + αθ(∇θJk + λk∇θpks) (11)

where ∆, I are proportional and integral values, respectively,
with KP ,KI denoting their coefficients. The proportional
term ∆ serves as an immediate feedback of the constraint
violation. The integral term I eliminates the steady-state
error at convergence. In such a framework, the penalty
method and traditional Lagrangian method can be regarded
as two special cases of PI Lagrangian with KP > 0,KI = 0
and KP = 0,KI > 0, respectively. Actually, the proportional
and integral terms together will achieve better performance
in RL, just as the PI controller works well in control area.

However, if the chance constraint is very tight and the
initial policy is relatively unsafe, the integral terms usually
increase rapidly since ∆ is large, which will cause the
overshooting of λ. With a large λ in (11), the policy tends to
be over-conservative since the weight of ∇θpks is relatively
large. Even worse, since the maximal safe probability is 1,
the overshooting and conservatism problems will not recover
by themselves. For e.g., if 1 − δ = 0.999, ps = 1.0 and
the λk is already overshooting, the integral term I only
decreases very slowly with the speed of ∆k = −0.001.
Therefore, the policy optimization in such a case will be
decelerated. This challenge is also not well recognized and
resolved in previous similar works like [18]. In this paper, we
draw inspiration from some anti-saturation methods in PID
control [22], and introduce the integral separation technique.
It reshapes the integrator in (9) into:

Ik ← (Ik−1 +KS∆k)+,

KS =


0 ε1 < ∆k

β ε2 < ∆k < ε1

1 ∆k < ε2

(12)

where KS is the separation function, 1 > β > 0, ε1 > ε2 > 0
are the parameters. Obviously, the piecewise function KS

separates the integrator out or slows it down if the error
is relatively large. Such a recipe prevents the occurrence
of integral-overshooting, greatly improving the performance
under tight constraint as shown in our experiments.

The framework of proposed method is summarized Fig. 2.
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Fig. 2. The framework of SPIL method.

B. Analytical Gradient of Safe Probability

In the previous subsection, we have derived the main
update rules of our SPIL method. The following parts discuss
about how to calculate ps and ∇θps in the update equations.

The safe probability ps can be directly estimated through
Monte-Carlo sampling. To be specific, we rollout M
trajectories with current policy π through the dynamic
model. Suppose there are m safe trajectories, then the safety
probability is ps ≈ m

M . Note that this rollout procedure
will not impose much extra computation burden since these
trajectories are also necessary for the update of actor-critic
as we will discuss in III-C.

However, it turns out that the gradient ∇θps(π) is rather
difficult to compute, which is also a major challenge in
chance constrained problems [20], [23]. Previous researchers
usually replace ∇θps(π) with the gradient of a lower bound
of ps without sufficient theoretical basis [14], [15]. In this
paper, we introduce an analytical gradient from the recent
research in stochastic optimization [23]. To the best of our
knowledge, this is the first time such a gradient is used in
RL.

We first define an indicator-like function φ(z, τ):

φ(z, τ) =
1 + a1τ

1 + a2τ exp(− z
τ )
,

0 < a2 <
a1

1 + a1
, 0 < τ < 1

(13)

where z and τ are scalar variables of the function, a1, a2 are
the parameters. The expected production Φ(π, τ) is defined
as:

Φ(π, τ) = Ex0,ξ

{
N∏
t=1

φ (−h(xt), τ)

}
(14)

As shown in Fig. 3, φ(z, τ) can be intuitively regarded
as a differentiable approximation of indicator function
for constraint violation, and its expected product Φ(π, τ)
approximates joint safe probability. The parameter τ controls
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Fig. 3. Comparison of indicator function and φ(z, 0.03).

how well the indicator function is approximated. Regardless
of the nonlinearity and convexity of h(xt), the gradient of
Φ(π, τ) is proved to converge to the gradient of joint safe
probability ps(π) as τ approaches 0 under mild assumptions
[23].

lim
τ→0+

sup
θ∈Θ
∇θΦ(π, τ) = ∇θps(π) (15)

where Θ is a ball in the policy parameter space. The
equation (15) shows that one can use the gradient of a
differentiable function Φ(π, τ) to approximate ∇θps(π) if
τ is small enough. For simplicity, we do not provide more
mathematical details; interested readers are recommended to
refer to [23] for a rigorous explanation. In practice, one only
needs to pick a small fixed τ and compute ∇θΦ(π, τ) with
any autograd package, where the expectation is substituted
by sampling average. According to our experiments, the
algorithm performance is not sensitive to τ , and the range
from 0.001 to 0.1 is acceptable. Finally, the order of
magnitude of ∇θJ and ∇θps are usually different. To better
balance them, the gradient ∇θps is re-scaled to match the
scale of ∇θJ :

∇θps ←
‖∇θJ‖
‖∇θps‖

∇θps (16)

C. Model-based Actor-Critic with Parameterized Functions

In this subsection, the main focus is on how to learn a
parameterized policy and state-action value function in the
model-based framework, where the gradient of the dynamic
model will be utilized to attain an accurate ascent direction
and thus improve the convergence rate compared with model-
free RL algorithms [24], [25].

For an agent behaving according to policy π, the values
of the state-action pair (x, u) are defined as follows:

Qπ(x, u) = Eξ

{ ∞∑
t=0

γtr (xt, ut)
∣∣∣x0 = x, u0 = u

}
(17)

Consequently, the expected cumulative reward J can be
expressed as a N -step form:

J(π) = Ex0,ξ

{
N−1∑
t=0

γtr (xt, ut) + γNQπ(xN , uN )

}
(18)

For large and continuous state spaces, both value function
and policy are parameterized, as shown in (19). The
parameterized state-action value function with parameter w

is usually named the “critic”, and the parameterized policy
with parameter θ is named the “actor” [25].

Q(x, u) ∼= Q(x, u;w), u ∼= π(x; θ) (19)

The parameterized critic is trained by minimizing the
average square error (20):

JkQ = Ex0,ξ

{
1

2

(
Qtarget −Q(x0, u0;wk)

)2}
(20)

where Qtarget =
∑N−1
t=0 γtr (xt, ut) + γNQ

(
xN , uN ;wk

)
is

the N -step target. Note that the rollout length N is identical
to the horizon of chance constraint.

The semi-gradient of the critic is

∇ωJkQ = Ex0,ξ

{(
Q(x0, u0;wk)−Qtarget

) ∂Q(x0, u0;wk)

∂w

}
(21)

As discussed in (5), the parameterized actor aims to
maximize Lagrangian function L via gradient ascent. The
analytical gradient ∇θL is composed of ∇θJ and ∇θps,
which are computed via backpropagation though time with
the dynamic model [25]. In practice, they can be easily
obtained by any autograd package. Finally, the pseudo-code
of proposed algorithm is summarized in Algorithm 1. Note
that, to maintain a relatively consistent step size, the update
rules for θ in (11) is re-scaled by 1

1+λk .

Algorithm 1 SPIL algorithm
Initialize x0 ∈ X , k = 0
repeat

Rollout M trajectories by N steps via dynamic model
Estimate safe probability
pks ← m

M
Update λ via PI Lagrangian rules

∆k ← 1− δ − pks
Ik ← (Ik−1 +KS∆k)+

λk ← (KP∆k +KII
k)+

Update critic according to (21):
ωk ← ωk−1 + αω∇ωJkQ

Update actor:
θk ← θk−1 + αθ∇θL
∇θL = 1

1+λk

(
∇θJk + λk∇θpks

)
k ← k + 1

until |Qk −Qk−1| ≤ ζ and |πk − πk−1| ≤ ζ

IV. NUMERICAL EXPERIMENT

A. Experiment Setup

In this section, the proposed SPIL is applied to a car-
following scenario as shown in Fig. 4, where the ego car
expects to drive fast and closely with the front car to reduce
wind drag [26], while keeping a minimum gap between the
two cars at a high probability. Concretely, the ego car and
front car follow the kinematics model, where the front car
is assumed to drive with a randomly varying velocity (e.g.,
due to the varying road grade, wind drag).
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Fig. 4. Car-following scenario.

The discrete-time stochastic system is

xt+1 = Axt +But +Dξt

A =

 1 0 0
0 1 0
−T T 1

 ,
B = [T, 0, 0]>, D = [0, T, 0]>

(22)

The system state vector is x = [ve vf ε]> , where ve
denotes the velocity of ego car, vf is the velocity of front
car, and ε is the gap between the two cars. The control input
u ∈ (−4, 3) is the acceleration of ego car. The disturbance
ξt ∼ N (0, 0.7) is truncated in the interval (−7, 7). T = 0.1s
is the simulation time step. With a chance constraint on the
gap, the chance constrained RL problem is defined as

max
π

∞∑
t=0

γt(0.2ve,t − 0.1εt − 0.02u2
t )

s.t. Pr

{
N⋂
t=1

(εt > 2)

}
≥ 1− δ

(23)

where ve,t denotes the ego car velocity at step t.

B. Implementation Details

We implement SPIL algorithm on the problem above. Our
parameterized actor and critic are both fully-connected neural
networks. Each network has two hidden layers using rectified
linear unit (ReLU) as activation functions, with 64 units per
layer. We adopt the Adam method to update the networks
[27]. The main hyper-parameters are listed in Table I.

To demonstrate the advantages of SPIL, we compare the
performance of SPIL with the penalty method (amounts to
proportional-only SPIL) and traditional Lagrangian method
(amounts to integral-only SPIL). The coefficients of SPIL
are KP = 15,KI = 0.6. The penalty method is trained on
two different weights KP = 12 and 80. Actually, KP = 80
already has large oscillation, so we do not choose a larger
weight even through KP = 80 cannot totally satisfy the
constraint. For the traditional Lagrangian, we initially tested
on small KI = 0.6 but it diverged, so a large KI =
18 is chosen. The cumulative reward and safe probability
in horizon N are compared under two chance constraint
thresholds 90.0% and 99.9%, i.e., δ = 0.1 and δ = 0.001.

C. Evaluation Results

1) Overall Performance: The learning curves are plotted
in Fig. 5, where each curve is averaged over five independent
experiments. We emphasize that any comparison between the

TABLE I
HYPER-PARAMETERS

Parameters Symbol Value
trajectories number M 4096
constraint horizon N 40
discounting factor γ 0.99
learning rate of policy network αθ 3e-4
learning rate of value network αω 2e-4
parameters of KS β 0.3
parameters of KS ε1 0.2
parameters of KS ε2 0.05
parameters of φ(·) τ 1e-3
parameters of φ(·) a1 0.45
parameters of φ(·) a2 1

methods should consider both safety and reward-winning,
and the reader should not draw conclusions only from one
aspect. Generally, our SPIL not only succeeds to satisfy
the chance constraint without periodic oscillations, but also
achieves best cumulative reward among methods which meet
the safety threshold.

Observing the safe probability curves in Fig. 5(c) and
Fig. 5(d), the proposed SPIL satisfies the chance constraint
in both settings. On the contrary, the penalty method with
KP = 12 fails to achieve the required threshold due to
small penalty weight. Although one can improve the penalty
size and raise KP to reduce this error (i.e., set KP =
80), large KP also brings about rapid oscillations as a
side effect, especially when the threshold is 90.0%. This
is because with a large KP , a small change of ∆ will
cause a dramatic change of λ, resulting in a radical policy
update. The Lagrangian method does not have steady-state
errors (i.e., constraint violation), but suffers from periodic
oscillations under 90.0% threshold. In a word, the proposed
SPIL combines the advantages of integral and proportional
methods, leading to a stable learning process with no steady-
state errors. Interestingly, these phenomena are quite similar
to conclusions in PID control, which exhibits the beauty of
understanding optimization from the control perspective.

As for the cumulative reward shown in Fig. 5(a) and
Fig. 5(b), excluding the unsafe penalty method (KP = 12),
SPIL achieves the best cumulative reward in both thresholds
among the other three methods, which confirms the excellent
performance of SPIL.

2) Integral Separation: Subsequently, we demonstrate
that the integral separation technique in SPIL is essential
to prevent integral-overshooting and avoid policy over-
conservatism. We manually select five initially unsafe
random seeds, i.e., the safe probability of initial policy ps <
0.5, and train the policy under 99.9% threshold using SPIL
with and without integral separation. The learning curves of
cumulative reward J , safe probability ps, integral value I
are plotted in Fig. 6. If the integral separation is removed,
the integral value I in Fig. 6(c) will have a sharp rise at
the beginning. Then the policy rapidly learns to satisfy the
constraint with safe probability becoming 1. However, since
∆ = −0.001 in (9), the decrease of I is quite slow. With the
excessively large I and λ, the policy keeps conservative for
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Fig. 5. Comparison of performance among SPIL (separated PI Lagrangian), penalty method and traditional Lagrangian method.

a long time and wins few rewards. On the contrary, with the
help of integral separation, I will not overshoot at the start
and the policy successfully strikes a good balance between
performance and safety, i.e., achieves more rewards while
satisfying the constraint. We stress the integral-overshooting
problems are not well recognized and solved in similar RL
works [18] and we are the first to discuss about it and give
a solution. Note that the results in Fig. 5 and Fig. 6 are not
comparable since the latter are conducted under manually
chosen bad initial policies.

3) Sensitivity Analysis: A potential drawback of SPIL is
that it introduces additional tuning parameters such as KP ,
KI and β. However, we find that the performance of SPIL
is relatively insensitive to the choice of these parameters.
To demonstrate this, we conduct a series of experiments
across different values of KP , KI and β while keeping all
other parameters fixed. The results under 90.0% threshold are
summarized in Table II, III and IV, with the best parameters
shown in bold. Even the worst case only leads to 1.8%
degradation in safe probability and 6.5% degradation in
cumulative reward.

TABLE II
COMPARISON OF PERFORMANCE FOR DIFFERENT KP

Value of KP 3.75 7.5 15 30 60
Cumulative reward 22.27 21.86 23.01 21.91 21.49
Safe probability 89.5% 90.2% 90.0% 91.6% 88.2%

TABLE III
COMPARISON OF PERFORMANCE FOR DIFFERENT KI

Value of KI 0.15 0.3 0.6 1.2 2.4
Cumulative reward 21.60 22.18 23.00 22.77 21.87
Safe probability 89.9% 89.96% 90.0% 90.52% 89.5%

TABLE IV
COMPARISON OF PERFORMANCE FOR DIFFERENT β

Value of β 0.1 0.2 0.3 0.4 0.5
Cumulative reward 21.87 21.25 23.00 21.90 21.74
Safe probability 90.0% 90.9% 90.0% 89.9% 90.1%

V. CONCLUSION

This paper proposed the separated proportional-integral
Lagrangian (SPIL) method for chance constrained RL. While
previous methods either utilized the proportional or the
integral values of constraint violation to optimize the safe
probability, SPIL instead utilized both the proportional and
integral value to combine their merits, and enhanced it with
an integral separation technique to limit the integral value
in a reasonable range. In addition, SPIL also introduced
an analytical gradient of safe probability for model-based
policy optimization. The benefits of SPIL were demonstrated
in simulations of a car-following task. It achieved high
cumulative reward while satisfying the chance constraint
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Fig. 6. Comparison of performance of SPIL with and without integral separation.

under different thresholds. The application of SPIL to more
general environmental dynamics will be investigated in the
future.
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