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Abstract: Reinforcement learning has the potentials of successfully control stochastic nonlinear environments in optimal
manners. We propose a mixed reinforcement learning (mixed RL) algorithm by simultaneously using dual representations
of environmental dynamics to search the optimal policy. Such a design has the capability of improving both learning
accuracy and training speed. The dual representation includes an empirical dynamic model and a set of state-action
data. The former can embed the designer’s knowledge and reduce the difficulty of learning, and the latter can be used
to compensate the model inaccuracy since it reflects the real system dynamics accurately. In the mixed RL framework,
the additive uncertainty of stochastic model is compensated by using explored state-action data via iterative Bayesian
estimator (IBE). The optimal policy is then computed in an iterative way by alternating between policy evaluation (PEV)
and policy improvement (PIM). The effectiveness of mixed RL is demonstrated by a typical optimal control problem of
stochastic non-affine nonlinear systems (i.e., double lane change task with an automated vehicle).
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1. INTRODUCTION

Reinforcement learning (RL) has been successfully
applied in a variety of challenging tasks, such as Go game
and robotic control [1, 2]. The increasing interest in RL
is primarily stimulated by its data-driven nature, which
requires little prior knowledge of the environmental
dynamics, and its combination with powerful function
approximators, e.g. deep neural networks. In spite of
these advantages, many purely data-driven RL suffers
from slow convergence rate in continuous action space
of stochastic systems, which hinders its widespread
adoption in real-world applications [3, 4].

Human beings can learn the optimal policy and
achieve goals in a complex environment without much
interaction since they can abstract prior knowledge from
the physical world to construct a model. This corresponds
to a class of model-based algorithms in RL, i.e., model-
driven approaches [4–9], which search the optimal policy
with known environmental model. The model can be
constructed from learning data by approximate function,
e.g., deep neural network, or obtained from the physical
process. These methods have shown faster convergence
and higher sample efficiency compared to the data-driven
counterparts.

Model-based approaches can tackle the low-efficiency
problem of model-free algorithms by combining model
and data. Prior works can be divided into following
categories, including Dyna-like algorithms [10, 11],
value expansion, adaptive programming [12, 13], and
sampling-based planning. Dyna-like algorithms alternate
between model learning from environmental interaction,
data generation and policy improvement by model-

free methods, e.g., ME-TRPO [14]. Although these
algorithms significantly improve the data efficiency,
they cannot change the convergence speed of the
RL algorithm. Value expansion algorithm utilizes
the dynamic model to improve the estimation of the
cumulative return [4], typically via the use of efficient
model ensemble technology [6]. Such a method to
improve the value estimation accuracy has been widely
adopted to combine with other model-based algorithms.
The adaptive dynamic programming is built upon the use
of analytic gradient of state transition to control input
that is calculated from the dynamic model. The dynamic
model can be either learned from the interaction data
or an analytical model derived from the first principle.
The optimal policy is then learned via backpropagation.
Typical algorithms in this category include dreamer [9],
PILCO [7], iLQG [8, 15] , and SVG [16]. These
algorithms converge faster than model-free methods and
Dyna-like algorithms, however they usually suffer from
the gradient instability caused by model mismatch and
the time-varying characteristic of the models. The idea
of sampling-based planning is to choose the best action
by a large number of samples, and regard it as the
objective for policy network. Representative algorithms
include the cross-entropy method [17] in continuous
space, which is used in PlaNet [18], and MCTS [19] in
discrete space. Although sampling-based approaches can
alleviate the problem caused by the gradient instability,
such method significantly increases the computational
overhead. While these four categories of model-based
approaches have achieved significant progress over the
past few years, their performance inevitably suffers from
the model mismatch: the learned dynamic models are



inclined to overfit on the local dynamics, while the
physical models have inherent modeling error. These
possible overfitting and model inaccuracy usually result
in a locally optimal but globally unsatisfactory policy and
cause an unstable training process, severely limiting the
applicability of model-based RL approaches.

To overcome these challenges, this paper proposes
a mixed reinforcement learning (mixed RL) algorithm
that utilizes the dual representations of environmental
dynamics to improve both learning accuracy and training
speed. The empirical model is used as the prior
information to reduce the difficulty to learn a model with
satisfying generalization ability and avoid overfitting,
while the model inaccuracy is iteratively compensated by
interaction data using Bayesian estimation. Precisely, the
contributions of this paper are as follows,
1). A dual representation of environmental dynamics,

which efficiently combines the designer’s knowledge
and explored data, is designed to improve the model
accuracy and computational efficiency in RL.

2). A mixed RL algorithm is developed by embedding
an iterative Bayesian estimator (IBE) into the policy
iteration process, which has superior performances
on convergence speed and policy accuracy.

The rest of this paper is organized as follows. The
mixed RL problem is formulated in Section 2. The
mixed representation of environmental dynamics is the
proposed in Section 3.. The mixed RL algorithm, as well
as the parametrization of the policy and value function,
is developed in Section 4. The effectiveness of mixed
RL problem using the double lane change task with a
automated vehicle is evaluated in Section 5. Section 6.
concludes this paper.

2. PROBLEM DESCRIPTION
Considering a stochastic system, it consists of

a deterministic environment and additive uncertainty,
where the actual dynamic is mathematically described as

xt+1 = f(xt, ut) + ξt,

ξt ∼ N (µ,K)
(1)

where t is the current time, xt ∈ X ⊂ R\ is the state,
ut ∈ U ⊂ Rm is the action, f(·, ·) is the deterministic
part of environmental dynamics, ξt ∈ Rn is the additive
stochastic uncertainty with unknown mean µ ∈ Rn and
covariance K ∈ Rn×n. In this study, we assume that the
additive stochastic uncertainty ξt follows the Gaussian
distribution and E {|ξt|} < ∞. Parameters µ and K can
be completely independent of (x, u) or form a functional
relationship with (x, u).

As shown in Fig. 1, actual environmental dynamic
contains both deterministic part f(·, ·) and uncertain part
ξt, where p(ξt) is the probability density of ξt and
p(xt+1) is the probability density of xt+1 under given
(xt, ut).

The objective of mixed RL is to minimize the
expectation of cumulative cost under the distribution of
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Fig. 1 Dynamics for the stochastic environment.

additive stochastic uncertainty ξ, shown as (2):

min
π
V (xt) = Eξ

{ ∞∑
k=0

γkl (xt+k+1, ut+k)

}
, (2)

where π is the policy, V (·) is the state value, which is
a function of current state xt. l(·, ·) ≥ 0 is the utility
function, which is positive definite. γ is the discounting
factor limited to 0-1, and Eξ(.) is the expectation w.r.t.
the additive stochastic uncertainty ξ. Especially, the
policy is a deterministic mapping:

ut = π(xt) (3)

The optimal cost function is defined as

V ∗(xt) = lnf{ut,ut+1,...,u∞} V (xt) (4)

where {ut, ut+1, . . . , u∞} is the action sequence starting
from time t. In mixed RL, the self-consistency condition
(5) is used to describe the relationship of state values
between current time and next time:

V (xt) = Eξ {l (xt+1, ut) + γV (xt+1)} (5)

By using Bellman’s principle of optimality. we have
the well-known Bellman equation:

V ∗(xt) = min
ut

{Eξ {l (xt+1, ut) + γV ∗ (xt+1)}} (6)

The Bellman equation implies that optimal policy can
be calculated in a step-by-step backward mechanism.
Therefore, optimal action is

π∗(xt)
def
= arg min

ut

{Eξ {l(xt+1, ut) + γV ∗ (xt+1)}}(7)

where π∗(·) represent the optimal policy that maps from
an arbitrary state x to its optimal action u∗. Similar
to other indirect RL problems, mixed RL aims to
find an optimal policy by minimizing cost (2) subject
to the constraints of environmental dynamics. The
searching procedure can be replaced by solving the
Bellman equation in an iterative way. The performance
of the generated policy depends on the accuracy of
the representation of the environmental dynamics. In
fact, either an empirical model or state-action samples
(x1, u1, . . . , xt, ut, . . .) can be an useful representation,
which corresponds to the so-called model-driven RL and
data-driven RL, respectively. The empirical model is



usually inaccurate due to environmental uncertainties,
which will impair the optimality of the generated policy.
The state-action samples, on the other hand, have low
sampling efficiency and will slow down the training
process.

3. DUAL REPRESENTATION OF
ENVIRONMENTAL DYNAMICS

In mixed RL, the environmental dynamics are dually
represented by both an empirical model M and state-
action data D. The former represents the designer’s
knowledge about the environmental dynamics. It is
defined in the whole state-action space and can be
used to accelerate the training speed and improve the
generalization ability. The latter comes from the real
interaction between the agent and the environment.
It is generally more accurate than M, and therefore
can compensate the model mismatch and improve the
estimation of the uncertain part in the analytical model.
Such dual representation can have accelerated training
compared to purely data-driven RL while achieving better
policy satisfaction than purely model-driven counterpart.

The empirical modelM is similar to (1):

M =
{
xt+1 = f(xt, ut) + ξMt

}
ξMt ∼ N (µM,KM)

(8)

where the mean µM and covariance KM of ξMt are
given in advance by designers. The given distribution
can be quite different from actual distribution due to the
modelling errors. Here, µM and KM are taken as the
prior knowledge of environmental dynamics.

The state-action data, i.e., a sequence of triples
(xj , uj , xj+1), is denoted by D:

D =
{(
xDj , u

D
j , x

D
j+1

)
, j = 1, 2, . . . , N

}
(9)

where xDj is the j-th state in D, uDj is the j-th
action in D, and N is the length of data samples.
Obviously, the measured data also inherently contain
the distribution information of ξ, and are taken as the
posterior knowledge of environmental dynamics.

If the environmental dynamics is exactly known,
optimal policy π∗(·) can be computed by only using the
dynamic model, which is also the most efficient RL.
However, the exact model is inaccessible in reality, and
thus the generated policy might not converge to π∗(·).
Although collecting samples D is less efficient, it can be
quite accurate to represent the environment, thus being
able to improve the generated policy. Therefore, the
mixed representation is able to utilize advantages of both
modelM and data D to improve training efficiency and
policy accuracy.
Improve modelM by using data D:

We utilize data samples to improve the estimation
of the additive stochastic uncertainty ξ in the analytical
model M. The uncertainty that inherently exists in a
state-action triple is equal to

ξDj = xDj+1 − f(xDj , u
D
j ) (10)

A Bayesian estimator is adopted to fuse the
distribution information of the additive stochastic
uncertainty from both model M and data D. The
Bayesian estimator aims to maximize the posterior
probability p (µ,K|D). In general, we introduce p(µ)
and p(K) as the the prior distribution of µ and K, then
the maximum likelihood problem becomes,

max
µ,K
{p (µ,K|D)}

⇔max
µ,K
{p (D|µ,K) p(µ)p(K)}

(11)

Under the assumption that data D is iid, (11) can be
rewritten into an iterative form,

max
µ,K

{
p
(
ξDk |µ,K

)
p (Dk−1|µ,K) p(µ)p(K)

}
Dk−1 =

{
ξD1 , ξ

D
2 , . . . , ξ

D
k−1
} (12)

Therefore, we can build an iterative Bayesian estimator
IBE(·) with the following general form,[
µk
Kk

]
= IBE

(
µk−1,Kk−1, ξDk

)
(13)

Here, we discuss two simplified cases of the Bayesian
estimator:

Case 1: Assume that the covariance K is known
and µ is independent from x and u, we introduce
µ ∼ N(µM,KM) provided by model M as the prior
distribution of µ. Thus, the objective function L of
Bayesian estimation becomes,

L =log {p(D|µ)p(µ)}

=
1

2
(µ− µM )

T K−1M (µ− µM )

+
1

2

N∑
j=1

(
ξDj − µ

)T K−1 (ξDj − µ)+ C

(14)

where p(µ) = N (µM,KM) is the prior distribution and
C is a constant. The optimal estimation of µ is calculated
by (15).

µ̂ =
(
K−1M +NK−1

)−1K−1M µM +K−1
N∑
j=1

ξDj

 (15)

The µ̂ can be iteratively computed by using IBE.
Define Ψk = K−1M + kK−1, and mk =

∑k
j=1 ξ

D
j , the

iterative Bayesian estimator IBE(·) is

Ψk = Ψk−1 +K−1, mk = mk−1 + ξDk

µ̂k = (Ψk)
−1 (K−1MµM +K−1mk

) (16)

Case 2: Assume that both the mean µ and covariance
K are unknown. The same prior distribution in case 1
is applied to µ. The covariance K is estimated by the
maximum likelihood estimation, since the parameters of
the prior distribution of K are inconvenient to determine



by human designer. Subsequently, the optimal estimation
of µ and K are as follows,

µ̂ =
(
K−1M +NK̂−1

)−1K−1MµM + K̂−1
N∑
j=1

ξDj


K̂ =

1

N

∑
j

(
ξDj − µ̂

) (
ξDj − µ̂

)T (17)

Define Ψk = K−1M+kK̂−1k andmk =
∑k
j=1 ξ

D
j . Then

µ̂ and K̂ can be iteratively computed by the following
IBE,

Ψk = Ψk−1 + K̂−1k−1
mk = mk−1 + ξDk

µ̂k = (Ψk)
−1
(
K−1M µM + K̂−1k−1mk

)
K̂k =

1

k

{
(k − 1)K̂k−1 +

(
ξDk − µ̂k−1

) (
ξDk − µ̂k−1

)T}
(18)

For more general cases where ξt is related to xt and
ut, i.e.,

ξt ∼ N(µt,Kt)
µt,Kt = φ(xt, ut;wφ)

(19)

where φ(·, ·) is a general function with parameter wφ.
Our goal is to infer the parameters ψ = (µw, σw), which
determine the distribution of wφ ∼ N(µw, σw). Thus,
the IBE becomes the estimator of ψ, and variational
Bayesian inference [20] could be used to solve such a
problem, that is to minimize the KL-divergence between
p(wφ|D) and q(wφ|ψ).

DKL[q(wφ|ψ)|p(wφ|D)]

=

∫
q(wφ|ψ) log

q(wφ|ψ)

p(wφ|D)
dw

=DKL[q(wφ|ψ)|p(wφ)]− Eq{log p(D|wφ)}+ C

(20)

where p(wφ) is the prior distribution of wφ, C is a
constant, and the objective function L can be simplified
as

L = DKL[q(wφ)|p(wφ)]− Eq{log(D|W )} (21)

To solve the above problem in an iterative manner, the
gradient descent method is used to find the optimal ψ, and
reparametrization method (wφ = µw + εσw) is utilized
to ensure the objective function could be optimized via
gradient propagation.

ψk+1 = ψk − α ∂L

∂wφ

∂wφ
∂ψ

(22)

4. MIXED RL ALGORITHM
4.1 Mixed RL Algorithm Framework

Existing RL algorithms that compute the optimal
policy via the use of Bellman equation are known as
indirect RL, and they usually involve PEV and PIM steps.
Different from traditional indirect RL algorithms, mixed

RL consists of three alternating steps, i.e., IBE, PEV
and PIM, as shown in Fig. 2. IBE that is proposed in
Section 3. is used to estimate the mean and covariance
of the additive stochastic uncertainty iteratively. PEV
seeks to solve a group of algebraic equations numerically
governed by the self-consistency condition (5) under
current-step policy π, and PIM is to search a better policy
by minimizing a “weak” Bellman equation.
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Fig. 2 The framework of the mixed RL algorithm.

In the first step, IBE calculates µk and Kk with
the latest data ξDk and the mixed model is updated
accordingly, i.e.,

x′ = f(x, u) + ξ̂k, ξ̂k ∼ N (µk,Kk) (23)

where [µk, µk]T = IBE
(
µk−1,Kk−1, ξDk

)
is defined

in (13) in the cases that ξ is independent to (x, u) and
[µk, µk]T = φ(xt, ut;wφ) that defined in (19) in the
cases that ξ is correlated to (x, u). The optimal policy is
searched by policy iteration with the mixed model (23).
In the second step, PEV solves (24) under the estimated
distribution of ξ:

V k(x) = Eξ̂k
{
l
(
x′, πk(x)

)
+ γV k (x′)

}
,∀x ∈ X (24)

where πk(x) is the current policy at k-step iteration, and
V k(x) is the state value to be solved under policy πk(x).
In the third step, PIM computes an improved policy by
minimizing (25):

πk+1(x) = arg min
π

{
Eξ̂k

{
l (x′, π(x)) + γV k (x′)

}}
(25)

where πk+1(x) is the new policy. The use of estimated ξ̂k
naturally embeds both empirical model and state-action
data into RL, which is able to improve the accuracy of
the additive stochastic uncertainty ξ and x′ and achieve
high convergence speed. The mixed RL algorithm is
summarized in Algorithm 1.

4.2 Mixed RL with Parameterized Functions
For large state spaces, both value function and policy

are parameterized in mixed RL, as shown in (26). The
parameterized value function with known parameter w



Algorithm 1 Mixed RL algorithm

Initialize IBE parameters µ̂0 = µM and K̂0 = KM
Initialize state x0 ∈ X , k = 0
repeat
update the mixed model by IBE (13) or (22)
x′ = f(x, u) + ξ̂k, ξ̂k ∼ N (µk,Kk)

PEV with mixed model:
V k(x) = Eξ̂k

{
l
(
x′, πk(x)

)
+ γV k (x′)

}
PIM with mixed model:
πk+1(x) = arg min

π

{
Eξ̂k

{
l (x′, π(x)) + γV k (x′)

}}
k = k + 1
until |V k+1 − V k| ≤ ε and |πk+1 − πk| ≤ ε

is called the “critic”, and the parameterized policy with
known parameter θ is called the “actor” [21].

V (x) ∼= V (x;w) u ∼= π(x; θ) (26)

The parameterized critic is to minimize the average
square error (27) in PEV, i.e.,

Jcritic = Eξ̂

{
1

2

(
l (x′, uθ) + γV k (x′;w)− V k(x;w)

)2}
(27)

The semi-gradient of the critic is

∂JCritic

∂w
=

∫
p (x′)

(
V k(x;w)− Vtarget

) ∂V k(x;w)

∂w
dx′(28)

where Vtarget = l (x′, uθ) + γV k (x′) is the target of the
value function’s output.

The parameterized actor is to minimize the “weak”
Bellman condition, i.e., to minimize the following
objective function,

JActor = Eξ̂
{
l (x′, uθ) + γV k (x′)

}
p (x′;uθ) ∼ N

(
f (x, uθ) + µ̂, K̂

) (29)

where µ̂ and K̂ are the mean and covariance of ξ̂. The
gradient of JActor is calculated as follows,

∂JActor

∂θ
=

∫ {[
l (x′, uθ) + γV k (x′)

] ∂p (x′;uθ)

∂θ

+
∂l (x′, uθ)

∂θ
p (x′;uθ)

}
dx′

(30)

In essence, the parameterized method is called
generalized policy iteration (GPI). Different from the
traditional policy iteration, PEV and PIM each has
only one step in GPI, which greatly improves the
computational efficiency when RL is combined with
neural network.

5. NUMERICAL EXPERIMENTS
In this section, the proposed mixed RL is first applied

to a linear system to compare with the model-free method
and the LQR algorithm based on the empirical model.
Then, it is evaluated on a nonlinear system and compared
with typical model-based RL methods.

5.1 Stochastic Linear System
Consider the F16 aircraft system [22] described by

ẋ = Ax+Bu+Dd

A =

[
−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

]
B = [0, 0, 5]T , D = [1, 0, 0]T

(31)

The system state vector is x = [α q δe] , where
α denotes the angle of attack, q is the pitch rate, and
δe is the elevator deflection angle. The control input
u is the elevator actuator voltage, and the disturbance
d ∼ N(0.05, 0.01) is the wind gusts on angle of attack.
Then with such a stochastic linear system equation, the
optimal control problem is defined as

min
u

∞∑
t=0

γt(xTt Qxt + uTt Rut)

s.t. ẋ = Ax+Bu+Dd

(32)

where the top left element of the matrix Q is considered
to be 20, and all the other elements are zero. It is also
assumed here that R = 1 and γ = 0.995. The optimal
feedback control law of this stochastic system can be
derived by Bellman principle of optimality [23], which
is composed of both gain and bias

u∗ =
[

0.8019 0.5607 0.0608
]
x+ 0.0696 (33)

We now implement the Mixed RL Algorithm and
compare the mixed RL with PPO2 [24], a widely used
model-free algorithm, and the LQR algorithm with the
empirical model (LQR-EM). The simulation interval is
chosen as T = 0.005(s). Fig. 3 and Fig. 4 show
the convergence rate is significantly faster than the PPO2
algorithm and the control performance is very close to
its optimal value. In contrast with mixed RL and PPO2,
the LQR-EM has higher cost when testing due to the
wind gusts which is not considered in the empirical
model. These results confirm that the proposed method
converges to the optimal solution and outperforms the
model-free method and LQR-EM.
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5.2 Stochastic Non-affine Nonlinear System
To demonstrate the advantages of mixed RL in

complex systems, we compared the performance of
mixed RL with the widely used model-based RL
methods, including dyna algorithm with the learned
model (Dyna-LM), dyna algorithm with the mixed
model (Dyna-MM), adaptive dynamic programming with
the learned model (ADP-LM) and adaptive dynamic
programming with the empirical model (ADP-EM).

We consider a typical optimal control problem
of stochastic non-affine nonlinear systems, i.e., the
combined lateral and longitudinal control of an automated
vehicle with stochastic disturbance (i.e., the influence
of small road slope and road bumps). The vehicle is
subjected to random longitudinal interference force Fdis
in the tracking process and the vehicle dynamics is shown
as follows [25],

ẋ =


Fyf cos δ+Fyr

m − vxr
aFyf cos δ−bFyr

Iz

ax + vyr − Fyf sin δ
m + Fdis

m
r

vx sinφ+ vy cosφ

 (34)

where the state x =
[
vy r vx φ y

]T
, vy is the

lateral velocity, r is the yaw rate, vx is the difference
between longitudinal velocity and desired velocity, φ is
the yaw angle, and y is the distance between vehicle’s
centroid and the target trajectory. For the control input
u = [δ ax]

T , where δ is the front wheel angle and ax
is the longitudinal acceleration. The Fyf and Fyr are the
lateral tire forces of the front and rear tires respectively,
which are calculated by the Fiala tire model [26]. In
the tire model,the tire-road friction coefficient µ is set as
1.0. The front wheel cornering stiffness and rear wheel
cornering stiffness are set as 88000 N/rad and 94000
N/rad respectively. The mass m is set as 1500 kg, the a
and b are the distances from centroid to front axle and
rear axle, and set as 1.14 m and 1.40 m respectively.
The polar moment of inertia Iz at centroid is set as
2420N/rad. The random longitudinal interference force

Fdis ∼ N(261, 32) and the desired velocity is set as 12
m/s [27].

For comparison purposes, a double-lane change
task is simulated respectively with three different RL
algorithms. The task is to track the desired trajectory
in the lateral direction while maintaining the desired
longitudinal velocity under the longitudinal interference
Fdis. Hence, the optimal control problem with
discretized stochastic system equation is given by

min
u

∞∑
t=0

γt
(

45 (vx − 12)
2

+ 60y2 + u>
[

800 0
0 1

]
u
)

s.t. xt+1 = f (xt, ut) + ξt, ξt = FdisT/m

(35)

where γ = 0.99 is the discounting factor, f(·, ·) is the
deterministic part of the discretized system equation of
(47), ξt is the additive stochastic uncertainty and the
simulation time interval T is set as 0.005(s).

The convergence performance of the five algorithms
mentioned above are illustrated in Fig.5. The adaptive
methods (i.e., mixed RL, ADP-EM and ADP-LM)
converge faster than the Dyna-like algorithms (i.e., Dyna-
LM, Dyna-EM), which demonstrates the advantage of the
utilization of the analytical gradient given by the dynamic
model. Moreover, the mixed RL outperforms the other
algorithms by having a superior convergence rate: it
converges almost twice faster than the ADP-LM without
oscillation. The reason why ADP-LM converges slower
than both the mixed RL and ADP-EM, is the mismatch of
the data distributions between two adjacent iterations and
the switching characteristics of the system, which lead
to the difficulties to learn an accurately enough model
purely from data. All the above results confirm the
effectiveness of the designer’s knowledge embedded in
mixed RL.
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Fig. 5 Convergence rate comparison between mixed RL,
model-driven RL, and data-driven RL.

It can also be noticed that ADP-EM achieves a similar
convergence rate as the mixed RL. However, the control
performance of ADP-EM is impaired by the model
inaccuracy. To illustrate this point, we test the policies
calculated by five methods in the double lane change task.
As shown in Fig. 6, all five policies could stably track the
target trajectory, while the tracking error is different.
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Fig. 6 Tracking performance comparison among five
RL methods. The red solid line shows the reference
trajectory that the vehicle needs to follow.

In particular, as shown in Fig.7, the mixed RL has
the minimum longitudinal speed error, since it enables
the vehicle to decelerate rapidly at sharp turns and
adjust back appropriately after passing the turns. In
contrast, because of the model inaccuracy, the policies
generated by ADP-EM have highest speed error due to
the insufficient deceleration when making turns.
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Fig. 7 Longitudinal speed error.

The mixed RL also outperforms the other five
benchmark methods in terms of the lateral position error.
As shown in Fig.8, the mixed RL has the minimum
steady-state lateral position error, while the Dyna-LM
and ADP-EM has the larger lateral position error. It
is worth noting that, when making sharp turns, the
mixed RL generates larger lateral position error than
most benchmark methods. This is, however, an expected
and desirable overshoot that is commonly observed in
RL controllers, as it allows the vehicle to rapidly adjust
its state so as to accurately track the trajectories in the
regions that change mildly and smoothly.

In summary, mixed RL exhibits the fastest convergence
speed during the training process and superior control
performance in the given double lane change task. The
ADP-EM has a similar convergence speed as the mixed
RL, but has higher tracking error due to the model
mismatch. Although the ADP-LM compensates the
model inaccuracy by iteratively updating the dynamic
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Fig. 8 Lateral position error.

model, it converges slower than both the mixed RL and
ADP-EM due to the difficulties to learn an accurately
enough model purely from data. The Dyna-like
algorithms have a slower convergence rate than the mixed
RL, due to the difficulties in finding the optimal policy
only by state-action data.

6. CONCLUSION
This paper proposes a mixed reinforcement learning

approach with superior performances on convergence
speed and policy accuracy for non-linear systems.
The mixed RL significantly improves the convergence
performance by integrating the designer’s knowledge
with the real interaction data, and ensures the policy
accuracy by embedding the iterative Bayesian estimator
into the generalized policy iteration framework. The
benefits of mixed RL are demonstrated in simulations
using both linear system and non-affine nonlinear system.
In particular, the mixed RL is shown to converge to
the optimal solution for stochastic linear systems. In
controlling the more challenging nonlinear systems, the
mixed RL achieves faster convergence rate and more
stable training process than model-free methods and the
model-based algorithms that generate the policy only
with learned models. In addition, the mixed RL has
lower policy error than the other model-based methods
that only utilize the empirical model, since the system
model is refined iteratively by the Bayesian estimation.
The application of the mixed RL to more general
environmental dynamics and non-Gaussian uncertainties
will be investigated in the future.
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