
Vol.:(0123456789)1 3

Automotive Innovation
https://doi.org/10.1007/s42154-021-00151-3

End‑to‑End Autonomous Driving Through Dueling Double Deep
Q‑Network

Baiyu Peng1 · Qi Sun1 · Shengbo Eben Li1 · Dongsuk Kum2 · Yuming Yin1 · Junqing Wei3 · Tianyu Gu3

Received: 24 June 2020 / Accepted: 26 April 2021
© The Author(s) 2021

Abstract
Recent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical
architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the
end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous
driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the
vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task.
Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion
information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves
sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate
its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which
indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://​
youtu.​be/​76ciJ​mIHMD8 or https://v.​youku.​com/v_​show/​id_​XNDM4​ODc0M​TM4NA==.​html.

Keywords  End-to-end autonomous driving · Reinforcement learning · Deep Q-network · Neural network

Abbreviations
CNN	� Convolutional neural network
RL	� Reinforcement learning
MDP	� Markov decision process
DQN	� Deep Q-Network
DDQN	� Double Deep Q-Network
DDDQN	� Dueling Double Deep Q-network
TORCS	� The Open Racing Car Simulator

1  Introduction

Autonomous driving vehicles are expected to have a huge
positive impact on the automotive industry, e.g., to enhance
road safety, ease road congestion, decrease fuel consumption

and free the human drivers. Great efforts are undertaken in
industry and academia on hardware and algorithmic research
on the architecture of autonomous driving. The most popular
paradigms are hierarchical scheme and end-to-end scheme.

The hierarchical scheme has been extensively studied dur-
ing the last two decades. It decomposes the problem into
several parts like environment perception, path planning,
and motion control. Carnegie Mellon first presented BOSS
autonomous driving car, which won the 2007 DARPA Urban
Challenge. It used onboard sensors like GPS, lasers, radars,
and cameras to percept the environment. Then a three-layer
planning system combining mission, behavioral, and motion
planning was adopted. The Boss car finished 96 km urban
environment autonomous driving in about 4 hours [1]. Stan-
ford also developed Junior in DARPA [2]. It was mainly
composed of a perception module and a navigation mod-
ule. The navigation module involved a finite state machine
(FSM), which possessed 13 states, including lane-keeping
and parking lot navigation. Further researchers introduced
various improvements of the hierarchical scheme from dif-
ferent aspects. Furda et al. [3] adopted multiple criteria
decision-making in the process of selecting the most appro-
priate driving maneuver, achieving safe autonomous driving
in some typical urban traffic. Akai et al. [4] employed the

 *	 Shengbo Eben Li
	 lishbo@tsinghua.edu.cn

1	 State Key Lab of Automotive Safety and Energy,
School of Vehicle and Mobility, Tsinghua University,
Beijing 100084, China

2	 Korea Advanced Institute of Science and Technology, 193,
Munji‑ro, Yuseong‑gu, Daejeon, Korea

3	 DiDi Autonomous Driving Company, Beijing 100084, China

https://youtu.be/76ciJmIHMD8
https://youtu.be/76ciJmIHMD8
https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html
http://crossmark.crossref.org/dialog/?doi=10.1007/s42154-021-00151-3&domain=pdf

	 B. Peng et al.

1 3

three-dimensional normal distribution transform (NDT) scan
matching for accurate localization and a model predictive
controller for vehicle motion control. The proposed auton-
omous driving system succeeded in mountainous public
roads. Although these hierarchical methods have been inves-
tigated for years, they are inherently very complicated in
structure and need carefully designing in every part, which
can be a considerable project. This also leads to a prominent
disadvantage of being prone to error propagation, as it was
in the well-known case of the Tesla accident. A white trailer
was misclassified as the sky in the perception module, result-
ing in dangerous planning and control.

Another autonomous driving scheme is the end-to-end
method. End-to-end autonomous driving has a simple
structure that directly uses raw sensor data as the inputs
and outputs the low-level control command like steer-
ing angle and acceleration. This method is attractive due
to its straightforward structure, which reduces the burden
of designing complex modules. In addition, since all sen-
sor data is directly used for driving, there will not be any
perception information loss or error propagation as it is in
a hierarchical scheme. End-to-end driving can be easily
combined with imitation learning or reinforcement learn-
ing, which achieves state-of-the-art autonomous driving
[5]. The end-to-end imitation learning is straightforward
and effective, which aims to mimic driver’s manipulation
with neural networks [6]. The first try of this idea was from
Pomerleau et al.[7] three decades ago. The proposed system
took use of fully connected networks to map the camera and
laser signal to steering angle. With the development of the
convolutional neural network (CNN), Lecun et al. [8] man-
aged to achieve end-to-end autonomous driving with CNN.
This CNN was trained based on human driving data, which
included videos from two cameras coupled with steering
commands. The trained CNN was able to control a remote
truck in a new environment while still avoiding collision.
Then a turning point came. In 2016, NVDIA first realized
end-to-end autonomous driving on real-world freeways [9].
Trained with driving data from humans, the developed sys-
tem learned to drive on highways. It worked well even when
visual guidance was unclear. However, all the experiments
above have a fatal flaw in that they tend to terribly rely on
a sea of labeled driving data. If these training data do not
cover uncommon scenarios, the autonomous driving vehi-
cles may probably fail. Facing urban traffic that is more com-
plicated, the required data will rise at an exponential level
that can hardly be collected. Besides, usually only safely
driven data is provided in the training process, which means
it cannot handle disturbance and unseen scenes caused by
possible poor driving behavior.

To avoid the demand of a large amount of labeled
data, reinforcement learning (RL) is regarded as a prom-
ising method for end-to-end autonomous driving. RL is a

self-learning algorithm which learns by a trial-and-error
fashion, i.e., it does not need explicit supervision from
human [10, 11]. Consequently, researchers began to pay
attention to the application of RL in autonomous driving
[12, 13]. Yu et al. [14] applied Deep Q-network (DQN)
to the webpage game JavaScript Racer. They took the raw
pixel as input and nine discretized actions as the output. The
trained controller succeeded in turning operation. Jaritz et al.
[15] used the A3C reinforcement learning framework to
learn vehicle control in a physically and graphically realistic
rally game. They also proved that the trained networks drove
well even on unseen tracks. Recently, some researchers have
begin to consider training directly in the real world. Kendall
et al. [16] developed an RL model that was able to learn a
policy for lane-keeping in a handful of training episodes
using a single monocular image as input. Their experiments
showed RL agent could achieve decent performance only
with less than thirty minutes of training.

Despite the success of the aforementioned work, they only
feed the raw pixels into the decision model. Actually, there
are sensors like engine speed sensors and wheel speed sen-
sors in the real vehicle. Ignoring this accessible information
in the driving process is a great waste. If these additional data
can be combined with the pixels, the autonomous vehicle
may potentially achieve much better driving performance.
For instance, given the lateral speed that can hardly be
deduced from images, the vehicle may be able to control the
steering angle more precisely considering its motion state.

This paper adopts a modified version of the classical
Deep Q-Networks (DQN), called Dueling Double DQN
(DDDQN), to realize the end-to-end autonomous driving
function. Instead of the traditional image-only input, a mixed
state input which comprises both camera image and a vector
of ego vehicle speed is proposed to provide additional infor-
mation for vehicles. Furthermore, this paper also designs the
corresponding dueling network architecture for the mixed
state input, including a CNN to handle the raw pixels and
fully connected layers for vehicle state. Our method is dem-
onstrated on The Open Racing Car Simulator (TORCS),
where it surpasses human drivers. Besides, this paper also
visualizes the saliency map of the learned neural network
and discovers the vehicle drives by observing the lane lines.
Precisely, the contributions of this paper are as follows:

1.	 An end-to-end autonomous driving method through
Dueling Double Deep Q-Network on TORCS. The state
space, action space and reward function and implement
RL algorithm is designed to realize end-to-end autono-
mous driving.

2.	 A mixed state input that comprises both camera image
and a vector of ego vehicle speed. The corresponding
dueling network architecture is designed, which includes
both CNN and fully connected layers.

End‑to‑End Autonomous Driving Through Dueling Double Deep Q‑Network﻿	

1 3

3.	 Visualization of neural network for end-to-end auton-
omous driving. The visualized saliency map of the
learned neural network suggests that the vehicle drives
by observing the lane lines.

The rest of this paper is organized as follows: Sect. 2
introduces the architecture of the end-to-end autonomous
driving. Section 3 presents the deep reinforcement learning
algorithm. Section 4 illustrates the design of state space,
action space, reward functions and dueling network architec-
ture. Section 5 discusses the experiment and training results.
Section 6 concludes this paper.

2 � End‑to‑End Autonomous Driving
Architecture

Traditional hierarchical methods always decompose the
problem into several parts like environment perception, path
planning, and motion control, which are too complicated to
design [1, 2, 17]. Instead, the structure of end-to-end autono-
mous driving is relatively simple and straightforward in that
they directly map raw sensor data to vehicle control signals
through deep neural network.

This research adopts the following end-to-end autono-
mous driving architecture which is illustrated in Fig. 1. At
each time step, the environment, e.g., a simulator, sends the
sensor data to the vehicle, which includes the frontal camera
image, longitudinal speed, lateral speed, engine speed, and
four wheel speeds. Both the images and the speed vector
comprise a state representation of the current step. This state
representation will be fed into the neural network, which
is trained offline through a certain RL algorithm. Then the
vehicle makes use of the policy network to select an optimal
action, i.e., a steering angle. Finally, the vehicle performs
this action in the simulator and it simulates the next step.

The adopted simulator in this paper is The Open Racing
Car Simulator (TORCS). TORCS is a famous open-source
car simulator widely used for autonomous driving research.

It provides users with an accessible vehicle dynamic model,
different tracks and especially graphics with which users
can train and test end-to-end autonomous driving neural net-
work. TORCS also has a built-in physics engine with steer-
ing angle, velocity and acceleration as its control inputs and
with camera image, vehicle position, velocity as its outputs.
Through an API called gym-TORCS, researchers can easily
input the control signals in TORCS and obtain the demand-
ing sensor data.

The core component of end-to-end autonomous driving
is the policy network, which serves as the brain of the ego
vehicle. The following section will elaborate on the deep
reinforcement learning algorithm used to train the optimal
neural networks.

3 � Deep Reinforcement Learning Algorithm

3.1 � Preliminaries and Definitions

This paper adopts the Markov Decision Process (MDP) to
formalize the reinforcement learning process. MDP con-
sists of a set of state S , a set of action A , a reward func-
tion r(s, a) ∶ S ×A → ℝ , a transition model P(s�|s, a) and a
discount factor � . At each step of the decision-making pro-
cess, the agent takes an action a ∈ A , then receives a scalar
reward signal r and reaches a new state s′ . Here the reward r
is a measurement of how good a decision is. It is a manually
designed function that has a lower value when the vehicle
enters a terrible state such as collision, and a higher value
for a normal state such as keeping in the center of a lane.
A policy �(a|s) ∶ S → A is a mapping from state space to
action space, which specifies what action will be take in a
certain state. Reinforcement learning aims to find a policy
�∗ that achieves rewards as high as possible, i.e., maximizes
the expected discounted total reward Gt in an episode.

The action-state values and state values are two primary
quantities to organize and structure the search for good poli-
cies. For an agent behaving according to a stochastic policy
� , the values of the state-action pair (s, a) and the state s are
defined as follows

The state-action values Q�(s, a) represent the expected
return starting from s, taking the action a, and thereafter
following policy � . Similarly, the state values V�(s) denote

(1)Q�(s, a)
def
= ��

[
∞∑

i=0

� irt+i|st = s, at = a

]

(2)V�(s)
def
= ��

[
∞∑

i=0

� irt+i|st = s

]

Fig. 1   End-to-end autonomous driving architecture

	 B. Peng et al.

1 3

the expected return when starting in state s and directly fol-
lowing policy � now and thereafter. The optimal state-action
values and state values are defined as

The optimal action value function obeys an inherent iden-
tity known as the Bellman optimality equation.

The underlying idea of many RL algorithms is to itera-
tively solve the Bellman optimality equation, i.e.,
Qi+1(s, a) = �s�

[
r(s, a) + � max

a�
Qi

(
s�, a�

)]
 . These methods

are also named indirect RL [18]. Note that in practice, one
normally lacks the state transition model, so the expectation
needs to be computed by sampling experience, i.e., generate
pair

(
s, a, r, s′

)
 by vehicle interacting with the environment.

As i goes to infinity, it will finally converge to the optimal
state-action values, given which one can readily derive the
deterministic optimal policy

In a word, reinforcement learning estimates the optimal
state-action values through the agent constantly interacting
with the environment. As soon as the value converges, the
optimal policy is obtained.

3.2 � Deep Q‑Network

Traditional tabular reinforcement learning stores the state-
action values in a Q-table, which is impractical for high-
dimensions tasks like end-to-end driving with image input.
This problem is also described as the ‘curse of dimensional-
ity’. To handle that problem, a famous algorithm called Deep
Q-network (DQN) was proposed [19]. Instead of Q-table,
it approximates the state-action values with a deep neural
network Q(s, a;�) , where � is the parameter of the network.

The Q-network Q(s, a;�) can be trained following the idea
of solving the Bellman equation. It is reformed as an opti-
mization problem, which allows us to implement gradient
descent methods to minimize the following loss function:

where yDQN = r + � max
a�

Q
(
s�, a�;��

)
 is the target of state-

action value. DQN introduces two separate networks. The
regular behavior network with parameter � is used to make

(3)Q∗(s, a)
def
= max

�
��Q

�(s, a)

(4)V∗(s)
def
= max

�
��V

�(s)

(5)Q∗(s, a) = �
s�

[
r(s, a) + � max

a�
Q∗

(
s�, a�

)]

(6)�∗(s) = argmax
a

Q∗(s, a)

(7)J(�) =
1

2
�s,a,r,s�

[
yDQN − Q(s, a;�)

]2

decisions while interacting. The target network with param-
eter �′ is used to form the target when training. The two
networks working together are proved to make learning more
stable [19].

Gradient descent is the most practical tool to optimize
the loss function. Thus the loss function is differentiated
with respect to the weights and arrive at the following
semi-gradient, which provides the path to optimal state-
action values.

However, there is another concern about deep neural net-
works. During the training process of the target network with
gradient, the training input must all be uncorrelated, which
is not the case in RL. Since the experience is generated by
a sequential decision-making task, it naturally correlates to
each other. The experience replay mechanism is proposed
to deal with this issue. The agent adds all its experiences to
a replay buffer, which is then sampled randomly to perform
updates on the network. The replay buffer will corrupt the
relevance between the sampled experience and reduce vari-
ance [19].

Further researchers also develop a widely used trick
called Double DQN (DDQN) [20]. It uses the current behav-
ior network to calculate the argmax over next state values
and the target network of that action, which will alleviate the
overestimation problem induced by the max operator of RL,
leading to better estimation. Double DQN trick is the same
as DQN but only to replace the target yDQN with

The corresponding semi-gradient of the neural network is

The key insight behind the whole algorithm is illustrated
in Fig. 2. At each time step, the environment module gener-
ates state representation s . The behavior network output an
action a according to �-greedy policy ��

�
 , i.e., most of the

time choose the best action a∗ = argmax
a

Q(s, a;�) but may
also choose a random action with probability � , to explore
more in state space. Then the action will be performed and
it reaches a new state s′ with reward r . The experience (
s, a, r, s′

)
 will all be immediately stored in the replay buffer.

At the same time, the vehicle samples a small batch from the
replay buffer. With the experience

(
s, a, r, s′

)
 in the batch,

one can implement gradient descent of behavior network
parameter � according to Eq. (10). In addition, the target
network will be updated with parameters of behavior net-
work every � steps. The above iteration process will be kept
until the optimal policy is obtained.

(8)∇�J(�) = �s,a,r,s�

[(
yDQN − Q(s, a;�)

)
∇�Q(s, a;�)

]

(9)yDDQN = r + �Q(s�, arg max
a�

Q
(
s�, a�;�

)
;��)

(10)∇�J(�) = �s,a,r,s�

[(
yDDQN − Q(s, a;�)

)
∇�Q(s, a;�)

]

End‑to‑End Autonomous Driving Through Dueling Double Deep Q‑Network﻿	

1 3

When algorithm converges, neural network parameters
are saved, which can be directly used as a controller for
autonomous driving tasks like what is explained in the afore-
mentioned end-to-end autonomous driving architecture in
Fig. 1.

The pseudocode of Double DQN is given in Algorithm 1.

a

4 � Lane‑Keeping Through DDDQN

In this section, the RL algorithm Double DQN with Dueling
Networks (DDDQN) is implemented on end-to-end autono-
mous driving, where the dueling networks are introduced
to improve performance. The testing driving task is lane-
keeping, i.e., the vehicle is expected to drive along the center
of the lane without getting out of the lane.

This section first defines the state space of the task and
designs the corresponding dueling network architecture.
Then action space and reward function are explained.

4.1 � Mixed State Space with Images and Speed
Vector

In previous end-to-end reinforcement learning implementa-
tions, only the image pixels serve as the input to the neural
network. However, in autonomous driving tasks, one actu-
ally has some off-the-shelf sensor data like engine speed or
wheel speed. It is natural and sensible to consider feeding
this data into the neural network apart from the images. With
more information, it will make a possibly better decision.
Note that this additional motion information is difficult to
obtain just from images, so they are not redundant. With
such an inspiration, this research chooses the mixed state
space as the inputs for neural network

where simg
t and sspdt represents processed frontal camera

image and vehicle speed vector, respectively.
Specifically, the vehicle agent will observe and receive

colored RGB images oimg
t in every step. Due to the lim-

ited computation and storage resource, the raw frames are
preprocessed by converting their RGB representation to

(11)st ≜

{
s
spd
t , s

img
t

}

Fig. 2   Double DQN algorithm
flow chart

	 B. Peng et al.

1 3

grayscale and down-sampling it to an 64 × 64 image simg
t  . In

addition, the speed data from TORCS is extracted to define
a speed vector sspdt which comprises longitudinal speed u ,
lateral speed v , engine speed veng and four wheel speeds
vwhl
i

, i = 1, 2, 3, 4

With the help of the extra motion information, a better
control effect is expected to be realized. Furthermore, the
next section will explain in detail how the image simg

t and the
speed vector sspdt are put into a custom-built neural network.

4.2 � Dueling Network Architecture

Q-network outputs the state-action values for each action in
a state, the architecture of which needs careful consideration.
Recent research proves that structure directly estimating the
action values of individual action is not very efficient, since
the actions are usually relevant and may have similar values
[21]. Instead, it is better to first estimate the state values
and the relative advantages of every single action, which
will then together derive the state-action values via some
operations. Here advantage A�(s, a) = Q�(s, a) − V�(s) rep-
resents how a certain action a is better or worse than other
actions in state s . This idea leads to a well-known archi-
tecture called Dueling Networks. It features two streams of
computation, the value stream that outputs a scalar V(s;�, �) ,
and the advantage stream that outputs an |A|-dimensional
vector A(s, a;�, �) , and they both share the same convolu-
tional encoder. Here the parameters of the whole network �

(12)s
spd
t =

[
u, v, veng, vwhl

1
, vwhl

2
, vwhl

3
, vwhl

4

]T

is decomposed into three parts �, �, � , where � denotes the
parameters of the convolutional layers, while � and � are the
parameters of the two streams of fully connected layers. The
two streams are merged by a special aggregator:

The principal benefits of DDDQN lie in variance reduc-
tion and sampling efficiency improvement. The experiments
in the next section will demonstrate how the dueling net-
works improve the performance.

Subsequently, the whole structure of the end-to-end
Q-networks is introduced. As Fig. 3 shows, the 64 × 64
image will first be processed by three convolutional layers.
The first convolutional layer has 32 8 × 8 filters with stride 4,
the second 64 4 × 4 with stride 2 and the third one consists
of 64 3 × 3 filters with stride 1. Then the output of the final
convolutional layers will be unfolded into a 7744-vector and
concatenated with the 7-vector speeds to form a 7751-vec-
tor. After that, the dueling network splits into two streams of
full-connected layers. Both the value and advantage streams
have three full-connected layers with the first layer having
128 units and the second layer having 32 units. The last
hidden layer of value steam has one output V(s) and the
advantage counterpart A(s, a) that has as many outputs as the
number of feasible actions. Ultimately, the value and advan-
tage streams converge to produce the final output using Eq.
(13). In addition, there are rectifier nonlinearities between
all adjacent layers.

(13)

Q(s, a;�, �, �) = V(s;�, �) +

(
A(s, a;�, �) −

1

|A|
∑

a�

A
(
s, a�;�, �

)
)

Fig. 3   Dueling network architecture for end-to-end autonomous driving

End‑to‑End Autonomous Driving Through Dueling Double Deep Q‑Network﻿	

1 3

4.3 � Discretized Action Space

TORCS accepts normalized steering angle command ranged
from −1 to + 1, where −1 and + 1 means, respectively, full
right and left that corresponds to an angle of 0.366519 rad.
Considering that DQN can only be implemented on the
problems with discrete actions, this paper discretizes the
action space and sets 17 different normalized steering angle
s: ± 0.25, ± 0.20, ± 0.15, ± 0.10, ± 0.05, ± 0.02, ± 0.01, ± 0.00
5, 0. Note that steering angle is divided more densely around
0 because this is helpful to drive more smoothly and steadily,
especially on the straight road. Besides, since large steering
angle command is not necessary for a lane-keeping task,
the max steering angle is set to ± 0.25. During the training
and testing, the longitudinal speed is controlled by a PID
controller and the target speed is 80 km/h, while the target
speed will be slowed down around the curves.

4.4 � Reward Function

The reward function consists of three terms:

where �1, �2, �3 are nonnegative weight coefficient, � is the
angle between the road tangent and vehicle (see Fig. 4),Wd
is the lane width,Py is the lateral position error between the
road center and the gravity center of the vehicle, which
means |||

Py

Wd

||| ∈ [0, 1] . Ifail is an indicative function

The first term in Eq. (14) is designed to encourage the
vehicle to drive along the road. The second term plays as
a punishment for deviating from the road center. The third
term penalizes the vehicle heavily if it gets out of lane or
stuck. This research chooses �1 = 1, �2 = 1, �3 = 2 in the
following experiment.

(14)r = �1cos� − �2

|||||

Py

Wd

|||||
− �3Ifail

(15)Ifail =

{
1, if out of lane or stuck

0, others

5 � Lane‑Keeping Experiments

This paper trains and evaluates the end-to-end reinforce-
ment learning autonomous driving method on TORCS. The
Adaptive Moment Estimation (Adam) algorithm is adopted
as the optimizers for networks because it is computation-
ally efficient and converges fast [22]. The discount is set to
� = 0.9 , and the learning rate to � = 0.0005 . The size of the
experience replay memory is 10,000 tuples. The batch size
for stochastic gradient descend is 32. The simple explora-
tion policy used is �-greedy policy with � = 0.1 all the time.
The selected track for training and testing is Road Tracks
CG Speedway No. 1 (see Fig. 5). The training platform is
NVIDIA GTX 1650 and Intel i5-9400. The deep learning
library is Pytorch. A single training run includes 400 epi-
sodes and it takes about 10 h. Note that the game will be
reset if the vehicle is stuck or get out of lane in order to save
time.

5.1 � Evaluation Results

This paper chooses the average reward (the average reward
per step in a whole episode) as the performance metric. The
compared algorithms include DDDQN, DDQN, DQN and a
human driver, who controls the vehicle manually with a key-
board after 30 min’ practice. The learning curve of average
reward during training is plotted by running five independent
experiments for each RL algorithm. As shown in Fig. 6, all
learning curves show that the average reward increases as
the training goes. DDDQN has the best performance during
the process, while DQN has the worst performance and large
variance. DDQN is between the two methods. Apart from
that, all three methods outperform a human driver only after
a short training, revealing the potential of RL controllers.

After all algorithms converge, their lane-keeping perfor-
mance is evaluated by using the learned network to drive 15
laps of the track. At the same time, a human driver also takes
the same test of 15 laps. The video for the experiment is
available online, https://​youtu.​be/​76ciJ​mIHMD8 or https://v.​
youku.​com/v_​show/​id_​XNDM4​ODc0M​TM4NA==.​html.
The lateral position error Py in a typical test lap is shown in
Fig. 7. The DDDQN controller shows a great performance
whose lateral position error varies in a very limited range Fig. 4   Reward function representations

Fig. 5   Top view of the test track

https://youtu.be/76ciJmIHMD8
https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html
https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html

	 B. Peng et al.

1 3

around 0, even in the later steps when the vehicle is on a
continuous bend. In contrast, the human driver has difficulty
in controlling the vehicle, especially in later steps where
there are many bends. It fluctuates dramatically. This fig-
ure reveals that the algorithm works quite well on the lane-
keeping task.

Furthermore, to quantificationally assess the superior per-
formance of DDDQN over others, the average reward and
average lateral position error (the average lateral position
error per step) in 15 laps are drawn in the boxplots Figs. 8
and 9. The proposed DDDQN dramatically outperforms the
human driver. It wins many more rewards with less variance
and the average lateral position error is even five times less
than the human driver. DDDQN is also the best one com-
pared with DDQN and DQN controllers, since it wins the
highest average reward and least position error. This result
confirms the introduction of a dueling network is helpful to
achieve better control performance and the end-to-end RL
controller is competent in this task. Besides, note that the
tested policy is a noisy policy ( �-greedy policy) instead of
a total greedy one. Thus, the vehicle may be driven to some
rare place away from the road center, but the result shows
the controller can drive it back since the average reward does
not decline a lot. This result proves that the RL controller
really learns to drive on the road, not just remembering a
fixed driving routine.

5.2 � Network Visualization and Saliency Maps

To gain deep insight into how the vehicle understands the
camera image and makes decisions, this paper draws the
saliency maps through the backward of the neural network,
following the method proposed by Simonyan [23]. More
specifically, the absolute value of the Jacobian of max

a
Q(s, a)

is computed with respect to the input frames to get a saliency
matrix

This gradient matrix ssal reveals which part of the image
is salient and contributes most to the decision-making. Note
that the matrix has the same dimensionality as the input
frames, i.e., 64 × 64 in shape.

Although one can directly draw ssal and the processed
camera simg relatively, like what Simonyan did in his paper,
it is almost impossible to compare anything on such two
low-resolution pictures. Therefore, it is necessary to process
them and put them in one composite image.

This paper first captures the raw 640 × 480 frame oimg in
TORCS, which is both colored and high-resolution. Second,
the saliency matrix ssal is resized into 640 × 480 and its val-
ues is normalized to [0, 255] . Then the colormap jet function
is applied to convert it a colored map smap . After that, with
both oimg and smap in the same shape, they can be combined
to produce an identifiable saliency map Sal(s):

(16)ssal =
||||
∇simg max

a
Q(s, a)

||||

(17)Sal(s) = �ss
map +

(
1 − �s

)
oimg

Fig. 6   Average reward during training Fig. 7   Lateral position error in a typical lap with the learned network

Fig. 8   Average reward of learned network

End‑to‑End Autonomous Driving Through Dueling Double Deep Q‑Network﻿	

1 3

where �s = 0.1 is the weight. Figure 10 depicts the sali-
ency maps in different scenarios of left turn, right turn and
straight line driving, from which the readers can easily find
the network pays close attention to the lane lines as well as
the road and horizon.

These results match the experience of human drivers.
Intuitively, to locate and keep in the center of the lane, a
driver must observe the position of lane lines all the time.
Beside it is also necessary to focus on the road and horizon
to make the decision of turning right or left.

6 � Conclusions

Autonomous driving systems are on the rapid rise during the
last decades. Especially, the end-to-end driving scheme has
gained widely attention due to its simple structure compared
with traditional hierarchical autonomous driving scheme.
In this paper, the author applies a deep reinforcement learn-
ing algorithm DDDQN, and proves it is a powerful tool
to realize end-to-end autonomous driving. This method is
attractive because it does not rely on a great deal of labeled
data or manually designed rules. The author first raises an
architecture of end-to-end autonomous driving with both
raw images and speed vector as its input, i.e., giving more
information to the RL agent. Then, the action space, state
space, reward function and dueling neural network archi-
tecture are designed for lane-keeping tasks. After that, the
algorithm is trained on TORCS and the performance of the
learned policy is evaluated. Experiments indicate the pro-
posed method outperforms the human driver dramatically.
To understand how the learned policy works, this paper also
plots the saliency map and discovers that the vehicle drives
depending on the observation of the lane lines and road.
In conclusion, the presented RL architecture is a promising
method for future end-to-end autonomous driving.

Fig. 9   Average lateral position error of learned network

Fig. 10   Saliency maps in scenarios of left turn, right turn and straight line driving

	 B. Peng et al.

1 3

In the future, the authors will extend the discretized
action space to continuous action space and try to control
the vehicle more smoothly. Besides, the potential of the
method in different driving tasks and more complicated
driving scenarios will be investigated.

Acknowledgements  This work is supported by the National
Key Research and Development Project of China under Grant
2018YFB1600600, and Beijing Natural Science Foundation with
JQ18010. The authors should also thank the support from Tsinghua
University-Didi Joint Research Center for Future Mobility.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Urmson, C., Anhalt, J., Bagnell, D., et al.: Autonomous driving
in urban environments: boss and the urban challenge. J. Field
Robot. 25(8), 425–466 (2008). https://​doi.​org/​10.​1002/​rob

	 2.	 Montemerlo, M., Becker, J., Bhat, S., et al.: Junior: the Stanford
entry in the urban challenge. J. Field Robot. 25(9), 569–597
(2008). https://​doi.​org/​10.​1002/​rob

	 3.	 Furda, A., Vlacic, L.: Enabling safe autonomous driving in real-
world city traffic using multiple criteria decision making. Intell
Transp Syst Mag IEEE 3(1), 4–17 (2011)

	 4.	 Akai, N., Saiki, L.Y.M, Yamaguchi, T., et al.: Autonomous driv-
ing based on accurate localization using multilayer LiDAR and
dead reckoning. In: 2017 IEEE 20th International Conference on
Intelligent Transportation Systems, pp. 1–6 (2017)

	 5.	 Li, S.E., Guan, Y., Hou, L., et al.: Key technique of deep neural
network and its applications in autonomous driving. J Autom Saf
Energy 10(2), 119–145 (2019)

	 6.	 LeCun, Y., Bengio, Y., Hinton, G., et al.: Deep learning. Nature
521(7553), 436–444 (2015). https://​doi.​org/​10.​1038/​natur​e14539

	 7.	 Pomerleau, D.: Alvinn: an autonomous land vehicle in a neural
network. In: Advances in Neural Information Processing Systems,
NIPS Conference, Denver, Colorado, USA (1988)

	 8.	 LeCun, Y., Muller, U., Ben, J., et al.: Off-road obstacle avoidance
through end-to-end learning. In: Advances in Neural Information
Processing Systems. MIT Press (2005)

	 9.	 Bojarski, M., Del Testa, D., Dworakowski, D., et al.: End to end
learning for self-driving cars. ArXiv abs/1604.07316 (2016)

	10.	 Li, S.E.: Reinforcement learning and control. Tsinghua Univer-
sity-Lecture Notes (2019) http://​www.​idlab-​tsing​hua.​com/​thulab/​
labweb/​publi​catio​ns.​html

	11.	 Duan, J., Li, S.E., Guan, Y., et al.: Hierarchical reinforcement
learning for self-driving decision-making without reliance on
labeled driving data. IET Intel. Transport Syst. 14(5), 297–305
(2020)

	12.	 Yin, Y., Li, S.E., Li, K., et al.: Self-learning drift control of auto-
mated vehicles beyond handling limit after rear-end collision.
Transp. Saf. Environ. 2(2), 97–105 (2020). https://​doi.​org/​10.​
1093/​tse/​tdaa0​09

	13.	 Li, S.E., Duan, J., Wang, W., et al.: Markov probabilistic decision
making of self-driving cars in highway with random traffic flow:
a simulation study. J. Intell. Connect. Veh. 1(2), 77–84 (2018).
https://​doi.​org/​10.​1108/​JICV-​01-​2018-​0003

	14.	 Yu, A., Palefsky-Smith, R., Bedi, R.: Deep reinforcement learning
for simulated autonomous vehicle control. Course Proj Reports
(2016). https://​doi.​org/​10.​1016/​0141-​1136(95)​00078-X

	15.	 Jaritz, M., De Charette, R., Toromanoff, M., et al.: End-to-end
race driving with deep reinforcement learning. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2070–2075 (2018). https://​doi.​org/​10.​1109/​ICRA.​2018.​84609​
34

	16.	 Kendall, A., Hawke, J., Janz, D., et al.: Learning to drive in a day.
In: 2019 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 8248–8254 (2019)

	17.	 Xin, L., Kong, Y., Li, S.E., et al.: Enable faster and smoother
spatio-temporal trajectory planning for autonomous vehicles in
constrained dynamic environment. Proc. Inst. Mech. Eng. Part
D J. Autom. Eng. 235(4), 1101–1112 (2020). https://​doi.​org/​10.​
1177/​09544​07020​906627

	18.	 Guan, Y., Li, S.E., Duan, J., et al.: Direct and indirect reinforce-
ment learning. ArXiv abs/1912.1 (2019)

	19.	 Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control
through deep reinforcement learning. Nature 518(7540), 529–533
(2015). https://​doi.​org/​10.​1038/​natur​e14236

	20.	 Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning
with double Q-learning. In: 30th AAAI Conference on Artificial
Intelligence, pp. 2094–2100 (2016)

	21.	 Wang, Z., Schaul, T., Hessel, M., et al.: Dueling network architec-
tures for deep reinforcement learning. 33rd International Confer-
ence on Machine Learning, 4:2939–2947 (2016)

	22.	 Kingma, D.P., Ba, J.: Adam: A method for stochastic optimiza-
tion. In: 3rd International Conference on Learning Representa-
tions (ICLR) (2015)

	23.	 Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convo-
lutional networks: visualising image classification models and
saliency maps. In: 2nd International Conference on Learning
Representations, (2014)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/rob
https://doi.org/10.1002/rob
https://doi.org/10.1038/nature14539
http://www.idlab-tsinghua.com/thulab/labweb/publications.html
http://www.idlab-tsinghua.com/thulab/labweb/publications.html
https://doi.org/10.1093/tse/tdaa009
https://doi.org/10.1093/tse/tdaa009
https://doi.org/10.1108/JICV-01-2018-0003
https://doi.org/10.1016/0141-1136(95)00078-X
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.1177/0954407020906627
https://doi.org/10.1177/0954407020906627
https://doi.org/10.1038/nature14236

	End-to-End Autonomous Driving Through Dueling Double Deep Q-Network
	Abstract
	1 Introduction
	2 End-to-End Autonomous Driving Architecture
	3 Deep Reinforcement Learning Algorithm
	3.1 Preliminaries and Definitions
	3.2 Deep Q-Network

	4 Lane-Keeping Through DDDQN
	4.1 Mixed State Space with Images and Speed Vector
	4.2 Dueling Network Architecture
	4.3 Discretized Action Space
	4.4 Reward Function

	5 Lane-Keeping Experiments
	5.1 Evaluation Results
	5.2 Network Visualization and Saliency Maps

	6 Conclusions
	Acknowledgements
	References

