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Abstract
Recent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical 
architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the 
end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous 
driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the 
vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task. 
Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion 
information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves 
sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate 
its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which 
indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://​
youtu.​be/​76ciJ​mIHMD8 or https://v.​youku.​com/v_​show/​id_​XNDM4​ODc0M​TM4NA==.​html.
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Abbreviations
CNN	� Convolutional neural network
RL	� Reinforcement learning
MDP	� Markov decision process
DQN	� Deep Q-Network
DDQN	� Double Deep Q-Network
DDDQN	� Dueling Double Deep Q-network
TORCS	� The Open Racing Car Simulator

1  Introduction

Autonomous driving vehicles are expected to have a huge 
positive impact on the automotive industry, e.g., to enhance 
road safety, ease road congestion, decrease fuel consumption 

and free the human drivers. Great efforts are undertaken in 
industry and academia on hardware and algorithmic research 
on the architecture of autonomous driving. The most popular 
paradigms are hierarchical scheme and end-to-end scheme.

The hierarchical scheme has been extensively studied dur-
ing the last two decades. It decomposes the problem into 
several parts like environment perception, path planning, 
and motion control. Carnegie Mellon first presented BOSS 
autonomous driving car, which won the 2007 DARPA Urban 
Challenge. It used onboard sensors like GPS, lasers, radars, 
and cameras to percept the environment. Then a three-layer 
planning system combining mission, behavioral, and motion 
planning was adopted. The Boss car finished 96 km urban 
environment autonomous driving in about 4 hours [1]. Stan-
ford also developed Junior in DARPA [2]. It was mainly 
composed of a perception module and a navigation mod-
ule. The navigation module involved a finite state machine 
(FSM), which possessed 13 states, including lane-keeping 
and parking lot navigation. Further researchers introduced 
various improvements of the hierarchical scheme from dif-
ferent aspects. Furda et al. [3] adopted multiple criteria 
decision-making in the process of selecting the most appro-
priate driving maneuver, achieving safe autonomous driving 
in some typical urban traffic. Akai et al. [4] employed the 
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three-dimensional normal distribution transform (NDT) scan 
matching for accurate localization and a model predictive 
controller for vehicle motion control. The proposed auton-
omous driving system succeeded in mountainous public 
roads. Although these hierarchical methods have been inves-
tigated for years, they are inherently very complicated in 
structure and need carefully designing in every part, which 
can be a considerable project. This also leads to a prominent 
disadvantage of being prone to error propagation, as it was 
in the well-known case of the Tesla accident. A white trailer 
was misclassified as the sky in the perception module, result-
ing in dangerous planning and control.

Another autonomous driving scheme is the end-to-end 
method. End-to-end autonomous driving has a simple 
structure that directly uses raw sensor data as the inputs 
and outputs the low-level control command like steer-
ing angle and acceleration. This method is attractive due 
to its straightforward structure, which reduces the burden 
of designing complex modules. In addition, since all sen-
sor data is directly used for driving, there will not be any 
perception information loss or error propagation as it is in 
a hierarchical scheme. End-to-end driving can be easily 
combined with imitation learning or reinforcement learn-
ing, which achieves state-of-the-art autonomous driving 
[5]. The end-to-end imitation learning is straightforward 
and effective, which aims to mimic driver’s manipulation 
with neural networks [6]. The first try of this idea was from 
Pomerleau et al.[7] three decades ago. The proposed system 
took use of fully connected networks to map the camera and 
laser signal to steering angle. With the development of the 
convolutional neural network (CNN), Lecun et al. [8] man-
aged to achieve end-to-end autonomous driving with CNN. 
This CNN was trained based on human driving data, which 
included videos from two cameras coupled with steering 
commands. The trained CNN was able to control a remote 
truck in a new environment while still avoiding collision. 
Then a turning point came. In 2016, NVDIA first realized 
end-to-end autonomous driving on real-world freeways [9]. 
Trained with driving data from humans, the developed sys-
tem learned to drive on highways. It worked well even when 
visual guidance was unclear. However, all the experiments 
above have a fatal flaw in that they tend to terribly rely on 
a sea of labeled driving data. If these training data do not 
cover uncommon scenarios, the autonomous driving vehi-
cles may probably fail. Facing urban traffic that is more com-
plicated, the required data will rise at an exponential level 
that can hardly be collected. Besides, usually only safely 
driven data is provided in the training process, which means 
it cannot handle disturbance and unseen scenes caused by 
possible poor driving behavior.

To avoid the demand of a large amount of labeled 
data, reinforcement learning (RL) is regarded as a prom-
ising method for end-to-end autonomous driving. RL is a 

self-learning algorithm which learns by a trial-and-error 
fashion, i.e., it does not need explicit supervision from 
human [10, 11]. Consequently, researchers began to pay 
attention to the application of RL in autonomous driving 
[12, 13]. Yu et al. [14] applied Deep Q-network (DQN) 
to the webpage game JavaScript Racer. They took the raw 
pixel as input and nine discretized actions as the output. The 
trained controller succeeded in turning operation. Jaritz et al. 
[15] used the A3C reinforcement learning framework to 
learn vehicle control in a physically and graphically realistic 
rally game. They also proved that the trained networks drove 
well even on unseen tracks. Recently, some researchers have 
begin to consider training directly in the real world. Kendall 
et al. [16] developed an RL model that was able to learn a 
policy for lane-keeping in a handful of training episodes 
using a single monocular image as input. Their experiments 
showed RL agent could achieve decent performance only 
with less than thirty minutes of training.

Despite the success of the aforementioned work, they only 
feed the raw pixels into the decision model. Actually, there 
are sensors like engine speed sensors and wheel speed sen-
sors in the real vehicle. Ignoring this accessible information 
in the driving process is a great waste. If these additional data 
can be combined with the pixels, the autonomous vehicle 
may potentially achieve much better driving performance. 
For instance, given the lateral speed that can hardly be 
deduced from images, the vehicle may be able to control the 
steering angle more precisely considering its motion state.

This paper adopts a modified version of the classical 
Deep Q-Networks (DQN), called Dueling Double DQN 
(DDDQN), to realize the end-to-end autonomous driving 
function. Instead of the traditional image-only input, a mixed 
state input which comprises both camera image and a vector 
of ego vehicle speed is proposed to provide additional infor-
mation for vehicles. Furthermore, this paper also designs the 
corresponding dueling network architecture for the mixed 
state input, including a CNN to handle the raw pixels and 
fully connected layers for vehicle state. Our method is dem-
onstrated on The Open Racing Car Simulator (TORCS), 
where it surpasses human drivers. Besides, this paper also 
visualizes the saliency map of the learned neural network 
and discovers the vehicle drives by observing the lane lines. 
Precisely, the contributions of this paper are as follows:

1.	 An end-to-end autonomous driving method through 
Dueling Double Deep Q-Network on TORCS. The state 
space, action space and reward function and implement 
RL algorithm is designed to realize end-to-end autono-
mous driving.

2.	 A mixed state input that comprises both camera image 
and a vector of ego vehicle speed. The corresponding 
dueling network architecture is designed, which includes 
both CNN and fully connected layers.
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3.	 Visualization of neural network for end-to-end auton-
omous driving. The visualized saliency map of the 
learned neural network suggests that the vehicle drives 
by observing the lane lines.

The rest of this paper is organized as follows: Sect. 2 
introduces the architecture of the end-to-end autonomous 
driving. Section 3 presents the deep reinforcement learning 
algorithm. Section 4 illustrates the design of state space, 
action space, reward functions and dueling network architec-
ture. Section 5 discusses the experiment and training results. 
Section 6 concludes this paper.

2 � End‑to‑End Autonomous Driving 
Architecture

Traditional hierarchical methods always decompose the 
problem into several parts like environment perception, path 
planning, and motion control, which are too complicated to 
design [1, 2, 17]. Instead, the structure of end-to-end autono-
mous driving is relatively simple and straightforward in that 
they directly map raw sensor data to vehicle control signals 
through deep neural network.

This research adopts the following end-to-end autono-
mous driving architecture which is illustrated in Fig. 1. At 
each time step, the environment, e.g., a simulator, sends the 
sensor data to the vehicle, which includes the frontal camera 
image, longitudinal speed, lateral speed, engine speed, and 
four wheel speeds. Both the images and the speed vector 
comprise a state representation of the current step. This state 
representation will be fed into the neural network, which 
is trained offline through a certain RL algorithm. Then the 
vehicle makes use of the policy network to select an optimal 
action, i.e., a steering angle. Finally, the vehicle performs 
this action in the simulator and it simulates the next step.

The adopted simulator in this paper is The Open Racing 
Car Simulator (TORCS). TORCS is a famous open-source 
car simulator widely used for autonomous driving research. 

It provides users with an accessible vehicle dynamic model, 
different tracks and especially graphics with which users 
can train and test end-to-end autonomous driving neural net-
work. TORCS also has a built-in physics engine with steer-
ing angle, velocity and acceleration as its control inputs and 
with camera image, vehicle position, velocity as its outputs. 
Through an API called gym-TORCS, researchers can easily 
input the control signals in TORCS and obtain the demand-
ing sensor data.

The core component of end-to-end autonomous driving 
is the policy network, which serves as the brain of the ego 
vehicle. The following section will elaborate on the deep 
reinforcement learning algorithm used to train the optimal 
neural networks.

3 � Deep Reinforcement Learning Algorithm

3.1 � Preliminaries and Definitions

This paper adopts the Markov Decision Process (MDP) to 
formalize the reinforcement learning process. MDP con-
sists of a set of state S , a set of action A , a reward func-
tion r(s, a) ∶ S ×A → ℝ , a transition model P(s�|s, a) and a 
discount factor � . At each step of the decision-making pro-
cess, the agent takes an action a ∈ A , then receives a scalar 
reward signal r and reaches a new state s′ . Here the reward r 
is a measurement of how good a decision is. It is a manually 
designed function that has a lower value when the vehicle 
enters a terrible state such as collision, and a higher value 
for a normal state such as keeping in the center of a lane. 
A policy �(a|s) ∶ S → A is a mapping from state space to 
action space, which specifies what action will be take in a 
certain state. Reinforcement learning aims to find a policy 
�∗ that achieves rewards as high as possible, i.e., maximizes 
the expected discounted total reward Gt in an episode.

The action-state values and state values are two primary 
quantities to organize and structure the search for good poli-
cies. For an agent behaving according to a stochastic policy 
� , the values of the state-action pair (s, a) and the state s are 
defined as follows

The state-action values Q�(s, a) represent the expected 
return starting from s, taking the action a, and thereafter 
following policy � . Similarly, the state values V�(s) denote 

(1)Q�(s, a)
def
= ��

[
∞∑

i=0

� irt+i|st = s, at = a

]

(2)V�(s)
def
= ��

[
∞∑

i=0

� irt+i|st = s

]

Fig. 1   End-to-end autonomous driving architecture
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the expected return when starting in state s and directly fol-
lowing policy � now and thereafter. The optimal state-action 
values and state values are defined as

The optimal action value function obeys an inherent iden-
tity known as the Bellman optimality equation.

The underlying idea of many RL algorithms is to itera-
tively solve the Bellman optimality equation, i.e., 
Qi+1(s, a) = �s�

[
r(s, a) + � max

a�
Qi

(
s�, a�

)]
 . These methods 

are also named indirect RL [18]. Note that in practice, one 
normally lacks the state transition model, so the expectation 
needs to be computed by sampling experience, i.e., generate 
pair 

(
s, a, r, s′

)
 by vehicle interacting with the environment. 

As i goes to infinity, it will finally converge to the optimal 
state-action values, given which one can readily derive the 
deterministic optimal policy

In a word, reinforcement learning estimates the optimal 
state-action values through the agent constantly interacting 
with the environment. As soon as the value converges, the 
optimal policy is obtained.

3.2 � Deep Q‑Network

Traditional tabular reinforcement learning stores the state-
action values in a Q-table, which is impractical for high-
dimensions tasks like end-to-end driving with image input. 
This problem is also described as the ‘curse of dimensional-
ity’. To handle that problem, a famous algorithm called Deep 
Q-network (DQN) was proposed [19]. Instead of Q-table, 
it approximates the state-action values with a deep neural 
network Q(s, a;�) , where � is the parameter of the network.

The Q-network Q(s, a;�) can be trained following the idea 
of solving the Bellman equation. It is reformed as an opti-
mization problem, which allows us to implement gradient 
descent methods to minimize the following loss function:

where yDQN = r + � max
a�

Q
(
s�, a�;��

)
 is the target of state-

action value. DQN introduces two separate networks. The 
regular behavior network with parameter � is used to make 

(3)Q∗(s, a)
def
= max

�
��Q

�(s, a)

(4)V∗(s)
def
= max

�
��V

�(s)

(5)Q∗(s, a) = �
s�

[
r(s, a) + � max

a�
Q∗

(
s�, a�

)]

(6)�∗(s) = argmax
a

Q∗(s, a)

(7)J(�) =
1

2
�s,a,r,s�

[
yDQN − Q(s, a;�)

]2

decisions while interacting. The target network with param-
eter �′ is used to form the target when training. The two 
networks working together are proved to make learning more 
stable [19].

Gradient descent is the most practical tool to optimize 
the loss function. Thus the loss function is differentiated 
with respect to the weights and arrive at the following 
semi-gradient, which provides the path to optimal state-
action values.

However, there is another concern about deep neural net-
works. During the training process of the target network with 
gradient, the training input must all be uncorrelated, which 
is not the case in RL. Since the experience is generated by 
a sequential decision-making task, it naturally correlates to 
each other. The experience replay mechanism is proposed 
to deal with this issue. The agent adds all its experiences to 
a replay buffer, which is then sampled randomly to perform 
updates on the network. The replay buffer will corrupt the 
relevance between the sampled experience and reduce vari-
ance [19].

Further researchers also develop a widely used trick 
called Double DQN (DDQN) [20]. It uses the current behav-
ior network to calculate the argmax over next state values 
and the target network of that action, which will alleviate the 
overestimation problem induced by the max operator of RL, 
leading to better estimation. Double DQN trick is the same 
as DQN but only to replace the target yDQN with

The corresponding semi-gradient of the neural network is

The key insight behind the whole algorithm is illustrated 
in Fig. 2. At each time step, the environment module gener-
ates state representation s . The behavior network output an 
action a according to �-greedy policy ��

�
 , i.e., most of the 

time choose the best action a∗ = argmax
a

Q(s, a;�) but may 
also choose a random action with probability � , to explore 
more in state space. Then the action will be performed and 
it reaches a new state s′ with reward r . The experience (
s, a, r, s′

)
 will all be immediately stored in the replay buffer. 

At the same time, the vehicle samples a small batch from the 
replay buffer. With the experience 

(
s, a, r, s′

)
 in the batch, 

one can implement gradient descent of behavior network 
parameter � according to Eq. (10). In addition, the target 
network will be updated with parameters of behavior net-
work every � steps. The above iteration process will be kept 
until the optimal policy is obtained.

(8)∇�J(�) = �s,a,r,s�

[(
yDQN − Q(s, a;�)

)
∇�Q(s, a;�)

]

(9)yDDQN = r + �Q(s�, arg max
a�

Q
(
s�, a�;�

)
;��)

(10)∇�J(�) = �s,a,r,s�

[(
yDDQN − Q(s, a;�)

)
∇�Q(s, a;�)

]
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When algorithm converges, neural network parameters 
are saved, which can be directly used as a controller for 
autonomous driving tasks like what is explained in the afore-
mentioned end-to-end autonomous driving architecture in 
Fig. 1.

The pseudocode of Double DQN is given in Algorithm 1.

a

4 � Lane‑Keeping Through DDDQN

In this section, the RL algorithm Double DQN with Dueling 
Networks (DDDQN) is implemented on end-to-end autono-
mous driving, where the dueling networks are introduced 
to improve performance. The testing driving task is lane-
keeping, i.e., the vehicle is expected to drive along the center 
of the lane without getting out of the lane.

This section first defines the state space of the task and 
designs the corresponding dueling network architecture. 
Then action space and reward function are explained.

4.1 � Mixed State Space with Images and Speed 
Vector

In previous end-to-end reinforcement learning implementa-
tions, only the image pixels serve as the input to the neural 
network. However, in autonomous driving tasks, one actu-
ally has some off-the-shelf sensor data like engine speed or 
wheel speed. It is natural and sensible to consider feeding 
this data into the neural network apart from the images. With 
more information, it will make a possibly better decision. 
Note that this additional motion information is difficult to 
obtain just from images, so they are not redundant. With 
such an inspiration, this research chooses the mixed state 
space as the inputs for neural network

where simg
t  and sspdt  represents processed frontal camera 

image and vehicle speed vector, respectively.
Specifically, the vehicle agent will observe and receive 

colored RGB images oimg
t  in every step. Due to the lim-

ited computation and storage resource, the raw frames are 
preprocessed by converting their RGB representation to 

(11)st ≜

{
s
spd
t , s

img
t

}

Fig. 2   Double DQN algorithm 
flow chart
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grayscale and down-sampling it to an 64 × 64 image simg
t  . In 

addition, the speed data from TORCS is extracted to define 
a speed vector sspdt  which comprises longitudinal speed u , 
lateral speed v , engine speed veng and four wheel speeds 
vwhl
i

, i = 1, 2, 3, 4

With the help of the extra motion information, a better 
control effect is expected to be realized. Furthermore, the 
next section will explain in detail how the image simg

t  and the 
speed vector sspdt  are put into a custom-built neural network.

4.2 � Dueling Network Architecture

Q-network outputs the state-action values for each action in 
a state, the architecture of which needs careful consideration. 
Recent research proves that structure directly estimating the 
action values of individual action is not very efficient, since 
the actions are usually relevant and may have similar values 
[21]. Instead, it is better to first estimate the state values 
and the relative advantages of every single action, which 
will then together derive the state-action values via some 
operations. Here advantage A�(s, a) = Q�(s, a) − V�(s) rep-
resents how a certain action a is better or worse than other 
actions in state s . This idea leads to a well-known archi-
tecture called Dueling Networks. It features two streams of 
computation, the value stream that outputs a scalar V(s;�, �) , 
and the advantage stream that outputs an |A|-dimensional 
vector A(s, a;�, �) , and they both share the same convolu-
tional encoder. Here the parameters of the whole network � 

(12)s
spd
t =

[
u, v, veng, vwhl

1
, vwhl

2
, vwhl

3
, vwhl

4

]T

is decomposed into three parts �, �, � , where � denotes the 
parameters of the convolutional layers, while � and � are the 
parameters of the two streams of fully connected layers. The 
two streams are merged by a special aggregator:

The principal benefits of DDDQN lie in variance reduc-
tion and sampling efficiency improvement. The experiments 
in the next section will demonstrate how the dueling net-
works improve the performance.

Subsequently, the whole structure of the end-to-end 
Q-networks is introduced. As Fig. 3 shows, the 64 × 64 
image will first be processed by three convolutional layers. 
The first convolutional layer has 32 8 × 8 filters with stride 4, 
the second 64 4 × 4 with stride 2 and the third one consists 
of 64 3 × 3 filters with stride 1. Then the output of the final 
convolutional layers will be unfolded into a 7744-vector and 
concatenated with the 7-vector speeds to form a 7751-vec-
tor. After that, the dueling network splits into two streams of 
full-connected layers. Both the value and advantage streams 
have three full-connected layers with the first layer having 
128 units and the second layer having 32 units. The last 
hidden layer of value steam has one output V(s) and the 
advantage counterpart A(s, a) that has as many outputs as the 
number of feasible actions. Ultimately, the value and advan-
tage streams converge to produce the final output using Eq. 
(13). In addition, there are rectifier nonlinearities between 
all adjacent layers.

(13)

Q(s, a;�, �, �) = V(s;�, �) +

(
A(s, a;�, �) −

1

|A|
∑

a�

A
(
s, a�;�, �

)
)

Fig. 3   Dueling network architecture for end-to-end autonomous driving
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4.3 � Discretized Action Space

TORCS accepts normalized steering angle command ranged 
from −1 to + 1, where −1 and + 1 means, respectively, full 
right and left that corresponds to an angle of 0.366519 rad. 
Considering that DQN can only be implemented on the 
problems with discrete actions, this paper discretizes the 
action space and sets 17 different normalized steering angle
s: ± 0.25, ± 0.20, ± 0.15, ± 0.10, ± 0.05, ± 0.02, ± 0.01, ± 0.00
5, 0. Note that steering angle is divided more densely around 
0 because this is helpful to drive more smoothly and steadily, 
especially on the straight road. Besides, since large steering 
angle command is not necessary for a lane-keeping task, 
the max steering angle is set to ± 0.25. During the training 
and testing, the longitudinal speed is controlled by a PID 
controller and the target speed is 80 km/h, while the target 
speed will be slowed down around the curves.

4.4 � Reward Function

The reward function consists of three terms:

where �1, �2, �3 are nonnegative weight coefficient, � is the 
angle between the road tangent and vehicle (see Fig. 4),Wd 
is the lane width,Py is the lateral position error between the 
road center and the gravity center of the vehicle, which 
means |||

Py

Wd

||| ∈ [0, 1] . Ifail is an indicative function

The first term in Eq. (14) is designed to encourage the 
vehicle to drive along the road. The second term plays as 
a punishment for deviating from the road center. The third 
term penalizes the vehicle heavily if it gets out of lane or 
stuck. This research chooses �1 = 1, �2 = 1, �3 = 2 in the 
following experiment.

(14)r = �1cos� − �2

|||||

Py

Wd

|||||
− �3Ifail

(15)Ifail =

{
1, if out of lane or stuck

0, others

5 � Lane‑Keeping Experiments

This paper trains and evaluates the end-to-end reinforce-
ment learning autonomous driving method on TORCS. The 
Adaptive Moment Estimation (Adam) algorithm is adopted 
as the optimizers for networks because it is computation-
ally efficient and converges fast [22]. The discount is set to 
� = 0.9 , and the learning rate to � = 0.0005 . The size of the 
experience replay memory is 10,000 tuples. The batch size 
for stochastic gradient descend is 32. The simple explora-
tion policy used is �-greedy policy with � = 0.1 all the time. 
The selected track for training and testing is Road Tracks 
CG Speedway No. 1 (see Fig. 5). The training platform is 
NVIDIA GTX 1650 and Intel i5-9400. The deep learning 
library is Pytorch. A single training run includes 400 epi-
sodes and it takes about 10 h. Note that the game will be 
reset if the vehicle is stuck or get out of lane in order to save 
time.

5.1 � Evaluation Results

This paper chooses the average reward (the average reward 
per step in a whole episode) as the performance metric. The 
compared algorithms include DDDQN, DDQN, DQN and a 
human driver, who controls the vehicle manually with a key-
board after 30 min’ practice. The learning curve of average 
reward during training is plotted by running five independent 
experiments for each RL algorithm. As shown in Fig. 6, all 
learning curves show that the average reward increases as 
the training goes. DDDQN has the best performance during 
the process, while DQN has the worst performance and large 
variance. DDQN is between the two methods. Apart from 
that, all three methods outperform a human driver only after 
a short training, revealing the potential of RL controllers.

After all algorithms converge, their lane-keeping perfor-
mance is evaluated by using the learned network to drive 15 
laps of the track. At the same time, a human driver also takes 
the same test of 15 laps. The video for the experiment is 
available online, https://​youtu.​be/​76ciJ​mIHMD8 or https://v.​
youku.​com/v_​show/​id_​XNDM4​ODc0M​TM4NA==.​html. 
The lateral position error Py in a typical test lap is shown in 
Fig. 7. The DDDQN controller shows a great performance 
whose lateral position error varies in a very limited range Fig. 4   Reward function representations

Fig. 5   Top view of the test track

https://youtu.be/76ciJmIHMD8
https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html
https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html
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around 0, even in the later steps when the vehicle is on a 
continuous bend. In contrast, the human driver has difficulty 
in controlling the vehicle, especially in later steps where 
there are many bends. It fluctuates dramatically. This fig-
ure reveals that the algorithm works quite well on the lane-
keeping task.

Furthermore, to quantificationally assess the superior per-
formance of DDDQN over others, the average reward and 
average lateral position error (the average lateral position 
error per step) in 15 laps are drawn in the boxplots Figs. 8 
and 9. The proposed DDDQN dramatically outperforms the 
human driver. It wins many more rewards with less variance 
and the average lateral position error is even five times less 
than the human driver. DDDQN is also the best one com-
pared with DDQN and DQN controllers, since it wins the 
highest average reward and least position error. This result 
confirms the introduction of a dueling network is helpful to 
achieve better control performance and the end-to-end RL 
controller is competent in this task. Besides, note that the 
tested policy is a noisy policy ( �-greedy policy) instead of 
a total greedy one. Thus, the vehicle may be driven to some 
rare place away from the road center, but the result shows 
the controller can drive it back since the average reward does 
not decline a lot. This result proves that the RL controller 
really learns to drive on the road, not just remembering a 
fixed driving routine.

5.2 � Network Visualization and Saliency Maps

To gain deep insight into how the vehicle understands the 
camera image and makes decisions, this paper draws the 
saliency maps through the backward of the neural network, 
following the method proposed by Simonyan [23]. More 
specifically, the absolute value of the Jacobian of max

a
Q(s, a) 

is computed with respect to the input frames to get a saliency 
matrix

This gradient matrix ssal reveals which part of the image 
is salient and contributes most to the decision-making. Note 
that the matrix has the same dimensionality as the input 
frames, i.e., 64 × 64 in shape.

Although one can directly draw ssal and the processed 
camera simg relatively, like what Simonyan did in his paper, 
it is almost impossible to compare anything on such two 
low-resolution pictures. Therefore, it is necessary to process 
them and put them in one composite image.

This paper first captures the raw 640 × 480 frame oimg in 
TORCS, which is both colored and high-resolution. Second, 
the saliency matrix ssal is resized into 640 × 480 and its val-
ues is normalized to [0, 255] . Then the colormap jet function 
is applied to convert it a colored map smap . After that, with 
both oimg and smap in the same shape, they can be combined 
to produce an identifiable saliency map Sal(s):

(16)ssal =
||||
∇simg max

a
Q(s, a)

||||

(17)Sal(s) = �ss
map +

(
1 − �s

)
oimg

Fig. 6   Average reward during training Fig. 7   Lateral position error in a typical lap with the learned network

Fig. 8   Average reward of learned network
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where �s = 0.1 is the weight. Figure 10 depicts the sali-
ency maps in different scenarios of left turn, right turn and 
straight line driving, from which the readers can easily find 
the network pays close attention to the lane lines as well as 
the road and horizon.

These results match the experience of human drivers. 
Intuitively, to locate and keep in the center of the lane, a 
driver must observe the position of lane lines all the time. 
Beside it is also necessary to focus on the road and horizon 
to make the decision of turning right or left.

6 � Conclusions

Autonomous driving systems are on the rapid rise during the 
last decades. Especially, the end-to-end driving scheme has 
gained widely attention due to its simple structure compared 
with traditional hierarchical autonomous driving scheme. 
In this paper, the author applies a deep reinforcement learn-
ing algorithm DDDQN, and proves it is a powerful tool 
to realize end-to-end autonomous driving. This method is 
attractive because it does not rely on a great deal of labeled 
data or manually designed rules. The author first raises an 
architecture of end-to-end autonomous driving with both 
raw images and speed vector as its input, i.e., giving more 
information to the RL agent. Then, the action space, state 
space, reward function and dueling neural network archi-
tecture are designed for lane-keeping tasks. After that, the 
algorithm is trained on TORCS and the performance of the 
learned policy is evaluated. Experiments indicate the pro-
posed method outperforms the human driver dramatically. 
To understand how the learned policy works, this paper also 
plots the saliency map and discovers that the vehicle drives 
depending on the observation of the lane lines and road. 
In conclusion, the presented RL architecture is a promising 
method for future end-to-end autonomous driving.

Fig. 9   Average lateral position error of learned network

Fig. 10   Saliency maps in scenarios of left turn, right turn and straight line driving
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In the future, the authors will extend the discretized 
action space to continuous action space and try to control 
the vehicle more smoothly. Besides, the potential of the 
method in different driving tasks and more complicated 
driving scenarios will be investigated.
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