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Abstract— Safety is essential for reinforcement learning (RL)
applied in real-world situations. Chance constraints are suitable
to represent the safety requirements in stochastic systems.
Previous chance-constrained RL methods usually have a low
convergence rate, or only learn a conservative policy. In this
paper, we propose a model-based chance constrained actor-
critic (CCAC) algorithm which can efficiently learn a safe and
non-conservative policy. Different from existing methods that
optimize a conservative lower bound, CCAC directly solves
the original chance constrained problems, where the objective
function and safe probability is simultaneously optimized with
adaptive weights. In order to improve the convergence rate,
CCAC utilizes the gradient of dynamic model to accelerate
policy optimization. The effectiveness of CCAC is demonstrated
by a stochastic car-following task. Experiments indicate that
compared with previous RL methods, CCAC improves the
performance while guaranteeing safety, with a five times
faster convergence rate. It also has 100 times higher online
computation efficiency than traditional safety techniques such
as stochastic model predictive control.

I. INTRODUCTION

Recent advances in deep reinforcement learning (RL) have
demonstrated state-of-the-art performance on a broad set of
tasks, including Atari games [1], StarCraft [2] and Go [3].
However, these works do not consider safety since they are
usually applied in virtual games. In many real-world tasks
such as autonomous driving and unmanned aerial vehicles,
the agent should follow some safety rules besides achieving
excellent performance. For instance, an autonomous car
driving on the highway, while optimizing its velocity, must
not take actions that may cause a crash with the surrounding
car. Usually, it is nontrivial to learn a driving policy that is
both efficient and safe. [4].

The safety consideration has taken different forms in the
safe RL community [5], [6]. Tamar (2013) treated safety in
a robust view and optimized the worst-case performance of
the agent [7]. Chow (2017) used value-at-risk as a metric
of safety and a policy was regarded safe if its value-at-
risk was high enough [8]. Recently, many researchers also
cast safety in the context of Constrained MDPs, where the
cumulative cost was constrained below a given threshold [9]–
[11]. However, these criteria all focus on reward-related or
cost-related measures, and they still lack a direct connection
with safety [12]. In other words, given a learned policy with a
certain value-at-risk, it is still hard to evaluate how safe the
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policy is. Indeed, an explicit safety constraint is preferred
in real-world applications [13], [14]. In this work, we aim
to build a safe policy optimization framework, which can
quantitatively constrain the possibility of the control policy
violating the state constraint. It should be stressed that plenty
of real-world systems are stochastic in nature, and thus the
state constraint only holds in a probability form, which
is quite different from the hard constraint in deterministic
systems. For example, in the case of an unmanned aerial
vehicle, the direction and force of wind are uncertain. Thus
it can only keep balance at a high probability. Specifically,
the state constraint in such a probability form is briefly called
chance constraint.

Strategies used to solve the chance constrained
reinforcement learning problems can be roughly categorized
into two approaches. The first and the most common solution
is to add a fixed-weight penalty term to the reward function
so as to prevent agents from entering the dangerous states
[15], [16]. Although this approach is very straightforward
and simple to implement, it requires the penalty weight to
strike a balance between safety and performance correctly.
Unfortunately, it is usually difficult to select an appropriate
fixed-weight. Especially, a large penalty is prone to converge
to sub-optimal solutions, while a small penalty is unable to
satisfy the constraint [10]. The second approach constrains
the lower bound of safe probability to the required threshold,
which can be solved through dynamic programming method
[17] or model-free primal-dual (MF-PD) method [18], [19].
Nevertheless, the dynamic programming method only works
in discrete state and action space, which can not be applied
to continuous problems. The model-free primal-dual method
is purely data-driven, which leads to high variance and
low convergence rate. Moreover, constraining the lower
bound of safe probability may produce a policy whose real
safe probability is significantly higher than the required
threshold, i.e, introduces large conservatism. As shown
in our experiments, the learned policy achieves 99% safe
probability even when the required threshold is only 90%,
and thus influences the performance.

To overcome the aforementioned challenges, this paper
proposes a model-based algorithm named chance constrained
actor-critic (CCAC). Instead of constraining the lower
bound of safe probability like MF-PD, CCAC directly
solves the original chance constrained problems through the
exterior point methods. In order to improve the convergence
rate, the gradient of dynamic model is utilized to guide
policy optimization. Finally, CCAC is compared with two
RL methods and two traditional safety techniques such
as stochastic model predictive control to demonstrate its



superior performance. The contributions of this paper are
as follows,

1) a direct approach to solve the chance constrained
problems, rather than indirectly solving by constraining
the lower bound of safe probability.

2) a model-based framework of policy optimization for
chance constrained problems, where the gradient of the
dynamic model is used to accelerate training process.

The rest of this paper is organized as follows. The chance
constrained RL problem is formulated in Section II. The
CCAC algorithm is proposed in Section III. The effectiveness
of CCAC is illustrated by a stochastic car-following task in
Section IV. Section V concludes this paper.

II. PRELIMINARY

For a discrete-time stochastic system, the dynamics with
the chance constraint is mathematically described as:

st+1 = f(st, at, ξt), ξt ∼ p(ξt),

Pr

{
N⋂
i=1

[h (st+i) < 0]

}
≥ 1− δ

(1)

where t is the current time step, st ∈ S is the state, at ∈ A
is the action, f(·, ·, ·) is the environmental dynamics, ξt ∈
Rn is the uncertainty following an independent and identical
distribution p(ξt), h(·) is the state constraint function and the
set {s | h(s) < 0} defines a safe region in which the agent
should remain. We do not make assumptions about the form
of f(·, ·, ·) and h(·), i.e., they can be linear or nonlinear. The
safety constraint takes form of a joint chance constraint with
1 − δ as the required threshold. Such a form is extensively
used in stochastic systems control [20]. Intuitively, it can be
interpreted as the probability of agent staying within a safe
region {s | h(s) < 0} over the horizon N is at least 1 − δ.
For simplicity, we only consider one constraint.

The objective of chance constrained RL problems is to
maximize the expectation of cumulative reward Jr, while
constraining the safe probability ps:

max
π

Jr (π) = Es0,ξ

{ ∞∑
t=0

γtr (st, at)

}

s.t. ps(π) = Pr

{
N⋂
t=1

[h (st) < 0]

}
≥ 1− δ

(2)

where π is the policy, r(·, ·) is the reward function, 0 < γ <
1 is the discounting factor and Es0,ξ(·) is the expectation
w.r.t. the initial state s0 and uncertainty ξ. Specifically, the
policy is a deterministic mapping from state space S to action
space A with parameters θ : at = π(st; θ).

The joint chance constraint in (2) is generally nonconvex
and intractable [21]. Therefore, previous methods like model-
free primal-dual (MF-PD) usually solve the chance constraint
indirectly, i.e, derive a lower bound of the joint probability
ps through the Boole’s inequality and turn to constrain this
lower bound [17], [18]. More specifically, a cost function

c(st, at, st+1) and the expected cumulative cost Jc are
defined as:

c(st, at, st+1) =

{
0 h(st+1) < 0

1 h(st+1) ≥ 0
(3)

Jc(π) = Es0,ξ

{
N−1∑
t=0

c(st, at, st+1)

}
(4)

Given the Boole’s inequality, a lower bound of ps is
derived as:

ps(π) = Pr

{
N⋂
t=1

[h (st) < 0]

}

≥ 1−
N∑
t=1

Pr {h (st) ≥ 0}

= 1− Jc(π)

(5)

The original chance constraint in (2) is indirectly imposed
by constraining its lower bound:

Jc(π) ≤ δ (6)

Many previous methods (e.g. MF-PD) adopt above
reformation because Jc has similar additive structure as
the objective function Jr, making it easier to impose the
constraints in the RL framework. However, constraining
the lower bound may lead to a policy whose real safe
probability is significantly higher than the required threshold,
i.e., introduces conservatism, as our experiments show in
section IV. This problem is also a main challenge of a class
of existing methods.

III. CHANCE CONSTRAINED ACTOR-CRITIC ALGORITHM

Different from previous methods which constrain the
lower bound of safe probability, we propose a model-based
approach to directly solve the original chance constrained
problem (2) with less conservatism. Besides, our method also
takes use of the gradient of dynamic model to accelerate the
training process.

A. Constrained Policy Optimization via Exterior Point
Methods

The adopted approach follows the idea of exterior
point methods, which are extensively used in constrained
optimization area [22]. The exterior point methods put the
chance constraint into a large and increasing penalty term in
the objective function in k-th iteration:

max
πk

JEP (πk) = Jr (πk)−
1

2
bkmax(1− δ − ps (πk) , 0)2

(7)
where bk � 0 is the penalty factor and {bk} is a given
monotone increasing sequence. Intuitively, the exterior point
methods penalize the violation of constraint as shown in
Fig. 1. As bk increases, the penalty will become tremendous,
pushing πk to the feasible region. Although the intermediate
policy may be infeasible, the convergent policy will be
feasible. This is also the reason why it is called exterior
point method.
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Fig. 1. Exterior point methods.

The chance constrained RL problem (2) is solved by
iteratively updating πk and bk as shown in Fig. 1. However,
in practice, the cost of solving πk in every iteration
until convergence is computationally prohibitive, and an
alternative is to replace the maximization by a gradient ascent
step

θk+1 = θk + αθ∇θJEP (8)

where αθ > 0 is the learning rate of policy and the policy
gradient ∇θJEP is derived as

∇θJEP =

{
∇θJr ps ≥ 1− δ
∇θJr + bk(1− δ − ps)∇θps ps < 1− δ

(9)

In order to compute the above gradient, we have to
obtain the current safe probability ps and its gradient
∇θps. Thanks to the available model, the safe probability
ps can be easily estimated by sampling large numbers
of trajectories. Specifically, we rollout M trajectories with
policy π. Suppose there are m safe trajectories, then the
safety probability is estimated by ps ≈ m

M . Note that this
rollout procedure will not impose extra computation burden
since these trajectories are also necessary for the update of
actor-critic as we will discuss in III-B. Unfortunately, the
gradient ∇θps is still hard to obtain, which is also a key
difficulty in solving the chance constrained problems. One
possible solution is to find a substitute ascent direction to
replace ∇θps. Inspired by the inequality ps ≥ 1 − Jc as
shown in (5), a decreasing Jc will push ps to the ascent
direction, so we replace ∇θps with −∇θJc. Consequently,
the new proxy policy gradient becomes:

∇θJPR =

{
∇θJr ps ≥ 1− δ
∇θJr − bk(1− δ − ps)∇θJc ps < 1− δ

(10)
This policy gradient can be intuitively interpreted as

follows. In order to solve the chance constrained problem
(2), we simultaneously optimize the cumulative reward and
the safe probability by gradient ascent. To balance the

two objectives, the weight of ∇θJc is adaptively adjusted
according to the current safe probability. We stress that
CCAC is essentially different from previous methods which
only constrain the lower bound. In CCAC, as long as the
chance constraint ps ≥ 1−δ is satisfied, the weight of ∇θJc
becomes zero and the safe probability will not be optimized.
While previous methods keep optimizing ps until Jc ≤ δ,
even when ps ≥ 1 − δ is already satisfied. That is the
underlying reason why CCAC is not conservative as previous
methods. Finally, in practice, since the weight bk(1−δ−ps)
in (10) may become excessively large, we instead use the
relative weights between ∇θJr and ∇θJc.

The proposed algorithm CCAC is summarized in
Algorithm 1 and Fig. 2.
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Fig. 2. The framework of CCAC algorithm.

B. Model-based Actor-Critic with Parameterized Functions

In this subsection the main focus is on how to learn
the policy and state-action values in the model-based actor-
critic framework with parameterized functions. Importantly,
the gradient of dynamic model will be utilized to attain an
accurate ascent direction and thus improve the convergence
rate [23], [24]. For an agent behaving according to policy
π, the values of the state-action pair (s, a) are defined as
follows:

Qπ(s, a) = Eξ

{ ∞∑
t=0

γtr (st, at)
∣∣∣s0 = s, a0 = a

}
(11)



Algorithm 1 CCAC algorithm
Initialize s0, b0, k = 0
repeat

Rollout M trajectories by N steps via dynamic model
Estimate safe probability through trajectories
ps ← m

M
Update critic according to (15):
ωk+1 ← ωk + αω∇ωJQ

Update actor according to (16):
θk+1 ← θk + αθ∇θJPR
∇θJPR = ∇θJr −max(1− δ − ps, 0)bk∇θJc

Update penalty factor bk
k ← k + 1

until |Qk+1 −Qk| ≤ ζ and |πk+1 − πk| ≤ ζ

The expected cumulative reward Jr can be expressed as a
N -step form:

Jr(π) = Es0,ξ

{
N−1∑
t=0

γtr (st, at) + γNQπ(sN , aN )

}
(12)

For large and continuous state spaces, both value function
and policy are parameterized, as shown in (13). The
parameterized state-action value function with parameter w
is usually named the “critic”, and the parameterized policy
with parameter θ is named the “actor” [23].

Q(s, a) ∼= Q(s, a;w), a ∼= π(s; θ) (13)

The parameterized critic is trained by minimizing the average
square error:

JQ = Es0,ξ
{
1

2

(
Qtarget −Q(s0, a0;w

k)
)2}

(14)

where Qtarget =
∑N−1
t=0 γtr (st, at) + γNQ

(
sN , aN ;wk

)
is

the N -step target. Note that the rollout length N is equal to
the horizon of chance constraint. The semi-gradient of the
critic is

∇ωJQ = Ex0,ξ

{(
Q(s0, a0;w

k)−Qtarget
) ∂Q(s0, a0;w

k)

∂w

}
(15)

As discussed in III-A, the parameterized actor aims to
maximize JEP via gradient ascent. The proxy gradient
∇θJPR is composed of∇θJr and∇θJc, which are computed
via backpropagation though time. Denoting ∂st

∂θ as φt, ∂at
∂θ

as ψt, then ∇θJr is derived as:

∇θJr =Es0,ξ

{
N−1∑
t=0

γt
[
∂r(st, at)

∂st
φt +

∂r(st, at)

∂at
ψt

]
+γN

[
∂Q(sN , aN )

∂sN
φN +

∂Q(sN , aN )

∂aN
ψN

]}
(16)

where

φt+1 = φt
∂f(st, at, ξt)

∂st
+ ψt

∂f(st, at, ξt)

∂at

with φ0 = 0, and

ψt = φt
∂π(st; θ)

∂st
+∇θπ(st; θ)

The gradient ∇θJc can be derived similar to (16).
Considering that c (s, a, s′) is an indicator function with zero
gradient, it is replaced by the sigmoid function:

c(s, a, s′) = sigmoid(ηh(s′)) (17)

where η > 0 is a scale factor. The benefits of calculating
∇θJr and ∇θJc in the model-based framework is that the
gradients of first N steps’ reward are computed analytically
through the dynamic model. In contrast, model-free methods
can not obtain these analytical gradients and thus only relies
on the value function, which is usually inaccurate with high
variance. In a word, the model-based framework achieves a
faster convergence rate due to a more accurate gradient [24].
The convergence and optimality of model-based actor-critic
framework have been well-studied in [25].

IV. NUMERICAL EXPERIMENT

A. Experiment Setup

In this section the proposed CCAC is applied to a
stochastic car-following scenario as shown in Fig. 3, where
the ego car expects to drive closely with the front car to
reduce wind drag, while keeping a minimum gap between
the two cars. Concretely, the ego car and front car follow the
kinematics model, where the front car is assumed to drive
at a constant speed vf but its location x′f is varying with
uncertainty (e.g., due to the varying of road grade, wind
drag). The minimum gap between the two cars is required
to be kept at a high probability.

𝜖 

𝑣𝑒   𝑣𝑓   

𝑥𝑓
′ ~𝒩(𝜇,𝜎)   

Fig. 3. Car-following scenario.

The discrete-time stochastic system is described by

st+1 = Ast +Bat +Dξt

A =

[
1 0 0
0 1 0

−T T 1

]
B = [T, 0, 0]>, D = [0, 0, T ]>

(18)

The system state vector is s = [ve vf ε]> , where ve
denotes the velocity of ego car, vf is the velocity of front
car, and ε is the gap between the two cars. The action at ∈
(−4, 3) is the acceleration of ego car, and the disturbance
ξt ∼ N (0, 1) is truncated in the interval (−5, 5). T = 0.1 is
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(c) Safe probability under 90.0% threshold
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Fig. 4. Comparison of training process among CCAC (chance constrained actor-critic), MF-PD (model-free primal-dual method) and FWP-20 (penalty
with fixed weight 20).

the simulation time step. The chance constrained RL problem
is defined as

max
π

Es0,ξ

{ ∞∑
t=0

γt(0.2ve,t − 0.05εt)

}

s.t. Pr

{
N⋂
t=1

[εt > 2]

}
≥ 1− δ

(19)

where ve,t denotes the ego car velocity at time step t. In
this setting, the agent is expected to drive fast and close to
frontal car while keeping a minimum gap of 2m.

B. Implementation Details

We implement CCAC algorithm on the problem above.
Our parameterized actor and critic are both fully-connected
neural networks. Each network has two hidden layers using
rectified linear unit (ReLU) as activation functions, with 64
units per layer. The main hyper-parameters of the algorithm
are listed in Table I. The penalty factor in (10) is set as
bk = min(1000 ∗ 1.01k, 10000).

C. Comparison Baselines

To demonstrate the advantages of CCAC, the performance
is compared with model-free primal-dual method (MF-
PD) [19], model-based fixed-weight penalty method (FWP),
and two traditional safety techniques, i.e., stochastic model
predictive control (SMPC) and safety shielding. The

TABLE I
HYPER-PARAMETERS

Parameters Symbol Value
trajectories number M 8192
constraint horizon N 80
discounting factor γ 0.98
actor learning rate αθ 36e-5→ 2e-5
critic learning rate αω 2e-4
scale factor η 10

five methods are evaluated under two chance constraint
thresholds 90.0% and 99.9%, i.e., δ = 0.1 and δ =
0.001. For FWP method, we test it with different penalty
weights in advance and choose a large weight 20 for 99.9%
threshold. Unfortunately, we find it is very hard to select
an appropriate weight which produces a 90.0% safe policy.
A small decline of the weight will cause a drastic decline
of the safe probability. Therefore, we just choose a weight
of 10 although it is relatively unsafe. For simplicity, FWP
with weight 10 and 20 are shortly labeled as FWP-10
and FWP-20, respectively. The SMPC method adopts the
stochastic tube approach to find the feasible actions under
uncertainty [26]. The safety shielding method projects the
action produced by an unconstrained policy network into
the safe action region by solving a constrained optimization
problems [27]. To handle the joint chance constraint, Boole’s
inequality is also used in both SMPC and shielding.



D. Evaluation Results

We will analyse the five methods from the aspects of
convergence rate, asymptotic performance and computation
time.

TABLE II
ASYMPTOTIC PERFORMANCE UNDER 90.0% CHANCE CONSTRAINT

Safe probability Discounted cumulative reward
CCAC 90.28% 50.17
MF-PD 99.72% 31.84
FWP-10 0.18% 196.10
FWP-20 100.00% 43.07
SMPC 99.41% 43.50
shielding 91.84% 42.67

TABLE III
ASYMPTOTIC PERFORMANCE UNDER 99.9% CHANCE CONSTRAINT

Safe probability Discounted cumulative reward
CCAC 99.88% 44.04
MF-PD 99.43% 29.89
FWP-10 0.18% 196.10
FWP-20 100.00% 43.07
SMPC 99.95% 42.15
shielding 91.89% 42.65

1) Convergence rate: For three RL methods (i.e., CCAC,
MF-PD and FWP), the learning curves of discounted
cumulative reward and joint safe probability in horizon N
are plotted in Fig. 4. Each curve is averaged over five
independent experiments. Besides, the curve of FWP-10
is omitted since it wins unreasonable reward by greatly
sacrificing safety. In Fig. 4(a), we notice that model-free
algorithm MF-PD converges at about 5000 iterations in
terms of reward. Contrarily, the model-based algorithms
CCAC and FWP learns at least five times faster and
converge within 1000 iterations. Besides, their variances are
dramatically lower than MF-PD. These observations confirm
the advantage of the utilization of the analytical gradient
given by the dynamic model to accelerate and steady the
training process.

2) Asymptotic performance: The comparisons of
asymptotic performance under two chance constraint
thresholds are summarized in Table II and Table III. The
proposed CCAC achieves the highest discounted cumulative
reward in both constraint thresholds. MF-PD exhibits
large conservatism and attains fewer rewards. Especially,
MF-PD learns a policy with 99.72% safe probability even
when the required threshold is only 90.00%. The root
cause of conservatism is that MF-PD imposes the chance
constraint indirectly by constraining the lower bound of
safe probability. On the contrary, CCAC directly solves
the original chance constraint and learns an optimal safe
policies with less conservatism. The FWP-20 method
achieves good performance in terms of both safety and
reward in 99.9% threshold, but FWP-10 fails in 90.0%
threshold. The traditional safety techniques SMPC and
shielding achieve overall good performance, and SMPC is

safer than shielding method. But similar to MF-PD, the use
of Boole’s inequality introduces conservatism, which makes
them win fewer rewards than CCAC in 90.0% threshold.

Additionally, one may question that the safe probability of
CCAC is slightly lower than the threshold in some iterations.
We argue that for chance constrained problems, the chance
constraint threshold is just a measurement of the safety
level, instead of a physical quantity. Therefore, it will not
cause huge difference if the safe probability is slightly below
the threshold. In our experiment shown in Fig. 4(d), the
fluctuation range around the constraint threshold is only
within 0.5%. Actually, since the safe probability is estimated
by Monte Carlo simulation with a parameterized policy
network, such a fluctuation of safe probability is inevitable.

To give an intuitive comparison of five methods, we
implement them under 90.0% threshold on the same initial
state, i.e., ve = 5, vf = 6 and ε = 6. Fig. 5
demonstrates the curve of car-following gap ε averaged on
twenty independent simulations. CCAC keeps the minimum
gap while maintaining safety. In contrast, MF-PD is more
conservative and retains a large gap from the front car.
FWP, SMPC and shielding methods achieve intermediate car-
following gaps.
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Fig. 5. Simulations of car-following gap among CCAC (chance constrained
actor-critic), MF-PD (model-free primal-dual), FWP-20 (penalty with fixed
weight 20), SMPC (stochastic model predictive control) and shielding.

3) Online computation efficiency: In some real-world
applications like autonomous driving, online computation
efficiency is also essential. The computation efficiency is
measured by average one-step computation time, i.e., given
a certain state, the average time the controller (or neural
networks for three RL methods) takes to compute the action.
Table IV summarizes the results of five methods, where the
optimization package for SMPC and shielding is Ipopt [28].
Benefitting from the parameterized policy networks, CCAC,
MF-PD and FWP achieve a dramatically fast computation
speed since they only involve the forward propagation
of neural networks. However, traditional safety techniques
like SMPC and shielding have to solve the constrained
optimization problems online. Thus their computation
efficiency is nearly 100 times lower. These results indicate
the remarkable advantages of CCAC over traditional safety



techniques and confirm the promising potential of CCAC in
real-world tasks.

TABLE IV
COMPARISON OF ONE-STEP COMPUTATION TIME

Methods CCAC MF-PD FWP SMPC shielding
time (ms) 0.051 0.057 0.051 8.168 4.936

In summary, CCAC succeeds in learning a safe but not
conservative policy, with a five times faster convergence rate
than existing chance-constrained RL approaches. It also has
100 times higher online computation efficiency than some
traditional safety methods.

V. CONCLUSION

This paper proposed a model-based RL algorithm CCAC
applied to safety-critical stochastic systems. Instead of
constraining the lower bound of safe probability like
previous methods, CCAC directly solved the original chance
constraint and thus avoided conservatism. Besides, CCAC
significantly improved the convergence rate by using the
gradient of dynamic model. The benefits of CCAC were
demonstrated in simulations of a stochastic car-following
task, where it achieved high reward while satisfying the
chance constraint. Additionally, CCAC also had five times
faster convergence rate than a model-free method and 100
times higher online computation efficiency than traditional
safety methods. The application of CCAC to more general
environmental dynamics will be investigated in the future.
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